Case 2:04-cv-01045-JFM Documen_t 303-18 Filed 11/18/11 Page 1 of J#Xo0050

S | < EXHIBIT
b\'\' z/,-;_”'/‘?é’ﬁ

TO: Bill Gates

FROM: Steven Sinofsky ~ N

cC ‘ .)
DATE: 6/8/93 T ’ B

SUBJECT: Sysiems Retreat: Chicago Integration

——

[———

infroduction

Althoughi our applications are designed and implemented in separate business units, it has become critical
ot us to think of our applications in texms of parts of a whole, where that whole, Office, is greater than the
sum of the parts. Chicago offers us an opportunity to redefine what it means for applications to integrate
together, and we must fully exploit our advantage to do 50. We need to use the momentum created by
Chicago to increase our application market share and drive ns mto new markets. Some difficult trade-offs
potentially exist,where an application might need to spend time on efforts that are not viewed as critical to
category success, or in re-implementing features that already work adequatety in order to gain synergy.
These costs are implicit in tha strategy, but to be clear this strategy should be priority one.

Integration and synergy will be the paradigm shift that will drive the Chicago wave of appiicationé and the
Chicago Office. Fundamental changes in application architecture/factoring or the desktop metaphor will
be part of the Cairo-specific releases of the applications.

The remainder of this memo discusses the current competitive landscape and then outlines specific ways i
which we can be creative to achieve a new degree of synergy and integration. Although this will sound
jike the old mantra of shared code, the reality is that by sharing code we will get the synergy we need. In
fact, it might even take more resources to develop the components because we will be trying to meet the
needs of several applications. :

Details on Chicago leverage can be found in two primary sources. The Chicage team has their Polats gf
Light document that outlines some specifics that an gpplications needs to do for Chicago. Chris Graham
has a memo that outlines meny areas an application can potentially leverage within Chicago.

Competitive Landscape

There are numerous efforis going on in the industry to ship suites of applications: Borland/WordPerfect
Office, WordPerfect, Lotus SmartSuite, and other second tier efforts (EDS and SPC bundle, for example).
The Borland/WP Office is an interesting arrangement that we do not quite understand, especially given that
there is no presentation graphics in the package and the need for the database is secondary. WordPerfect
will probably release their own suite that includes Fresents. Office, WordPerfect, and QuattroPro, leaving
out Paradox. In order for these to succeed beyond the short term, significant work will need to be done fo
eain the leve! of integration we will obtain in our applications. It is not clear how much work these two
cotmpanies are willing, or capable, of daing to gain syaergy.

Lotus SmartSuite poses a threat in two distinct ways. First, as a suite of applications SmariSuite 2.0 goes a
"long way towards a very high-level of integration. OLE 1.0 support (and OLE 2 in the works, though
possibly indirectly via a layer or even a campeting technology), Smartlcons, live status bar, DocCnline,
ete. 21l show that Lotus is serious about making their applications simitar. For the suite purchaser
concerned with uset-interface the differences between our next version of Office, with Word 6 and Excel 3,
and SmartSuite in terms of user-interface similarity will be minimal. Office will have superior OLE 2
integration, and we will need to use that as the competitive advantage, along with traditional category
strength. Lotus has promised integration of LomsScript into a future version of SmartSuite. If they are

o 2o 22 MICROSOFT CONFIDENTIAL *** k= Copyright & 1999 Microsoft Corporation

FL AG 0103212
CONFIDENTIAL -

o

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 2 of #X0050

able to deliver on this, it will put us in the position of comparing two scripting languages, which is far more
difficult than a has/doesn't have comparisen.

The longer term risk to our applications business is from the second half of the Lotus threat, Notes. The
current Iack of a short term Notes competitor from Microsoft has putis in a dangerous and awkward
pasition. First, we are spending cycles 1o forge a pre-Cairo Notes product, which we will have a hard time
migrating to Cairo. Second, our applications are being forced to do work to support Notes. A point which
Lotus only occasionalty fails to mention. Current data suggests that the adoption rate of Notes is not as
high as the PR surrounding the product. We must, however, be sure that our shori-term product is able to
integrate with our desktop applications in a manner comparable to the Notes demorsiration scenarios.
Work is being done in the Access 2.0 product 10 help position Access as a Notes competitor. We have
since decided to utilize VB as the front end for the product, we should be sure those resources are speat in
the most efficient manner. Unfortunately, Access' lack of a custom control technelogy makes it inadequate

a5 a competitive famework.

Implementation

In order to fully exploit Chicago on the target machine of 4MB, we will need to be exceedingly smart
about how we use memory in both our applications and systems. Realistically, the stze of OLE 2 means
that we wiil be very tight an any multiple-application integration that involves OLE, and it wilt probably
show very poar (thrashing) performance. This is unfortunate, and 1 hope everyone will seriously look at
making this possible. Historically, our competitors have shown a certain insensitivity to the 4MB
machine! and we should work to exploit that weakness. Every byte of code that we can share between our
applications increases the ability to do interesting integration scenarios on a Chicago machine.

‘T'here are limits to sharing and reimplementation, however, I would not go as far as to advise that our
applications ger rid of SDM.2 [believe, however, that it is crocial that we share implementations of the
standard user-interface elements of our applications &nd possibly with Chicago. An interesting issue is one
of how much we wish to distinguish our applications. For example, should a shared Toolbar
implementation be moved into Chicago's public APIs or should it remain in a Microsoft application-
specific DLL. If we move implementation to Chicago and the implementations do not meet the needs of
our applications. then we should improve the Windows implementation. Since many of these features are
being implemented as separate DLLS, itshould be possible to leverage development resources in our
applications groups to assist in this effort. The next section will outline those features where 1 think it is
crucial that we share both interface and implementation. 1 aiso believe there are common features that
have not received attention.

1 realize that it has been exwraordinarily difficult in the past to get groups to agree on a design, let alone

share code. IDG has made great strides in getting groups o share design, but in order to get real leverage s
and 100% consistency it is critical that we share implementation. Chicago and Chicago Office presents us

with an opportunity to redefine how we waork o cbain such goals. Simply put, the more code we share the
more interesting scénarios will be possible on commodity machines, For example, today if Word, Excel,

and the FileManager are running there are crrently three Toolbar/Status bar implerentations. Ona

Chicago machine, this redundancy pushes a working set that is already stretched to the Emit. Also, if we

Y et the press release and data shest for SmartSuite go as far as 0 recommend 2 permanent Swap file on a AMB machine.

he performance of SDM will slways be superios to the Windows dinlog manager because of the use of lightweight Windows.
Currently. SDM is about 100K so shering it beeween Word and Excel is onfy & stight burden to the sysiem. We should investigate.
kowever, il the improvements made 1o the Chicago dialog manager make this difference imperceptible to the user, Also, the dialog
manager does not offer the same localization and Mac suppant as SDM. Word 6, for exampie, uses WELM but continues 10 use SDM
for dinfops. Some applications are stilf nstusing WLM.

Copyright © 1999 Micrﬁsuf{ Corporation

FL AG 0103213
CONFIDENTIAL

#os MICROSOFT CONFIDENTIAL ¥¥% e vt en oo 2

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 3 of #X0050

can share the implementation among ouwr applications, then we can have a more interesting implementaton.

1t is quite possible to imagine that we would like only our applications to share such rich features as the

Toolbar, avd let the system use a minimal implementation for other ISVs. Chris Graham poses the —... —
question as "how interesting an application should the operating system be?* : ”

Integration and Synergy

There are many areas whers we have not been aggressive enough at identifying and exploiting in our core
applications. In addition, most of the areas that we do work In synergy do not share implementation. Chris
Graham has a very complete list of possible leverage points for Chicago applications, which when
combined with the list of Poinrs of Light from the Chicago tearn, will make our applications very
compelling. :

Chris Peters suggested that we develop a grid of all of our applications. We should look fow each
application can integrate and interoperate with each other application. Cf E0urse i I8 wrrealistic to assume
that we do a complete n? brezkdown, [do think that it is important to think of non-traditional integration.

These features and demonstratioas should have input from marketing and should serve as demonstrations
for Chicago Office in the field.

‘The following are just a few points T wish to highlight that | think are critical for the Chicago product,
Chicago applications, and the Chicago Office. [think by accomplishing these we can.achieve an
integration paradigm shift,)

User-inferface elements

This is the key area where we need to gain synergy. With Word 6 and Excel § we have gone a long way
towards nearly identical user-interface due to the work of the Interoperability group and the program
management resources that the products dedicated to the issue. The probiem is that both groups, and
subsequentiy any group that follows the design without sharing the implementation, implemented these
features independently. The different interpretations of the design specification made this inevitable. 1
think it is crucial that we nse Chicago as an opportunity to have a single code base for shared user-interface
elements. The reduction in working set from just unifying our Toolbar and status bar implementation
could be worth it. Ideally, we could even share the Toolbar bitmaps between applications and have oaly
ane copy on disk. -

One of the key areas we need to move towards is a single base of OLE 2 user-interface elements, since
there are so many and they are so standard. This is something the OLE 2 group finaily addressed to some
dseree, but did not provide an easily shared solution for our applications.

An issue that concerns me is how the Cairo user-interface changes would fit this model. If the Cairo user-
interface will require applications to expose more of their internal functionality through a commaon nser-
interface. the raliance on a system APl becomes more difficult. For example, the property sheet
mechanism has the potential to require applications to do calculations and ather work in erder to display,
update, and acknowledge property changes. We need to make sure that changes in the user-interface
paradigm do not force applications to implement these user-interface changes exclusively in their own code
space. It is not very intsresting if the only code we can share is the look of the property dialog.

Although the commodity Chicago machine is 2 VGA, and Chicago is encouraging developers to take
advantage of and be prepared for smaller screens, our applications and tools should think about taking
advantage of larger monitors and 24 bit color. In particular, most developer tools will be running op Jarger
screens than VGA so we should be sure to take advantage of this automatically for better window

4% MICROSOPT CONFIDENTIAL *+* o B e - CBpyTight © 1999 Micresofl Corporation

: FL AG 0103214
R , e ST CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 4 of Xxo0050

management, i.e. the display of code, properties, project window, etc, in VB. Applications should also use
Chicago as an opportunity to use 386 specific instructions in their 16 bit code, if it would provide a
performance bensfit.

Shared functionality

Along with sharing the implementation of straight user-interface elements, there are also elements that
have significant code behind them that we can also leverage. Tmake the distinction between a Toolbar
user-interface that has code to implement the Toolbar functionality, and functionality that is common
across our applications that exposes itself in 2 user-interface. 1 do not think there is any reason why our
apptications cannot share standard implementations of a number of functions. The following are just’

examples.

file open/save: [believe most applications have signed on to use the Chicago dialogs, which i very good.
The functionality gained shows how you can extend the semantics of user-fnterface much more easily with_____ . ..
a single implementation, in this case the addition of links and long file names.

insert picture: Currently each application implements Insert Picture with a common user-interface, but
there is substantial code that it takes to implement the function. In addition, if we shared the
implementation we could do clever things tike take advantage of the DegFile fayout cur applications use to
{ocate additional pictures, We could also utilize this implementation in the shared OLE server ClipArt
Gallery.

routing slip: This is another example of user-interface with substantial semantics behind it. Assuming a
single implementation, it would be much easier to extend this funcrionality in more interesting routing
scenarios without requiring each application to do significant work.

aute-save/hackup: This is an area where our applications and customers cannot seem fo agree. Since
many customers view this feature as critical, we should develop a super autosave/backup feature and share
it among all of our applications. The use of OLE 2 automation o drive the saving and backup means that -
our applications will need to agree on top level [Dispaich interfaces {for saving and loading, among others.

VB for Applications (Shell Programmability)

It goes without saying that VBA, Visual Basic for Applications, wiil be one of the key application, and
system, features that we will use to distinguish Microsoft products. ‘The challenge here will be o provide
reasonable intecfaces (IDispatch programmable ones) that show a coherent strategy. As we saw-with Excel
5.and to some extent OLE 2, it is possible to factor things too much and abuse the class/method paradigm,
1 do not think we will have this coherent view of the world if all of the groups that are currently working on
describing interfaces to their product continue on the same path. 1t takes evolution and experience
(iteration) to get these factoring correct. | think it is crucial that we funnel all product interfaces through a
single group for review. This review should not try to design the interfaces, but should concentrate on
general principles such as naming, factoring, and other conventions.

I addition to programming our applications, it is crucial that we introduce 2 notion of shell
programmability. The Chicago Shell should expose a sex of [Dispatch interfaces to allow all operations
that are allowed from the user-interface. This can be as steaight forward as having 1Shell with methods to
accomplish everything needed. Itis very easy to turn this into a major design exercise irying to factor
folders, files, links, ete. into classes, with collection/container semantics. This would not accomplish what
nearly ajl ISVs need and would only increase the complexity of what is essentially 2 baich fle, 1think that
many of the most interesting scenarios for the Chicago Office will involve the programmability of the
Shell,

wa b MICROSOFT CONFIDENTIAL *** - Copyright @ 1999 Micreseft Corporation

fe o . e L FL AG 0103
' | ' CONFIDENTI%E{.S

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 5 of X0050

Currently the Chicago Shell is not a true OLE client site. There would be serious performance problems
with both speed and working set if the Shell were to be impiemented as a client. Chicago has dotie some
work in demonstrating that with a few additional APIs, mostly in the arez of being able to know about a
file without reading in all of the contents, it might be possible to use OLE. Currently, Chicago has)
implemented an OLE-like interface for Shell extensions. Ideally, this would be a true OLE 2 container.,
This would enable more direct OLE 2 drag and drop support as well as the ability to use the Shell as an in~
place activation container. In order for this tc happen, the OLE team needs to do some performance work
and implement these additional APIs. 1 think this is more important than OLE adding new features, except
for possibly OLE controis. IBM has done same nice things for customizing the Workplace Shell, and we
should be aware of that competition.

. Within the Shell, we need to have a better understanding of how both file viewers, for browsing in the

Shell, and view fites, for sending in mail enclosures fit in. The Chicago specification is vague on where
viewers fit in the current plan. It is important to define this architecture and give the applications an
opportunity to write their own viewers. Microsoft needs a view file architecture to compete with third
party technology that is on the way (Adobe Acrobat, Common Ground, Disk Paper). The mail group
should probably define the architecture, though the applications ave in the best position to define a self-
conrained view file. | think Microsoft applications should define a special stream of compound files that
would contain the code for view files, and the Shell should understand this in the ShellExecute APL

Oue area that the Chicago specification addresses is the notion of personal directories, which are

directories that a user can specify for storing documents. Applications should definitely make sure this
feature will satisfy their users, and they should then take advantage of it.

Cue cards and Wizards

Unfortunately today there is no standard way to implement either cue cards or Wizards. Each group has

“ their own implementation, and the implementation is usually ad-hoc and extended as each new Wizard is
“ developed. Excel and Word have indicated that their plans are 1> implement Wizards and add-ins for the

Chicago products using VBA. This is exactly what we need to have happen, Given that direction, it
becomes possible to implement Wizards that span application boundaries. This would bea major
advaniage for Microsoft.

Cue cards are a more complex problem since there is more content authoring than automation, Many think
that cue cards are a hetter learning tool for users, because they do not just go 2nd complete a large number
of steps. but explain to the user what needs io be done. We should eollect data from Access and Publisher
to see how often cue cards are used and how effective they are. ltis clear that reviewers notice and write
abour cue cards, which may be reason enough to increase their use. Since cue cards are essentially content
authoring, we should coordinate between applications and be sure that there is cross application leverage of
cue card scenarios and materinl.

On-line documentation

For Chicago | would like to sec us do two novel things with on-line documentation. First, we shouid be
sure that our CD ROM versions of the documentation are high quality and are as pleasing to look at as
printed books, and have as many links and graphical elements as our current WinHelp documentation. The
Chicago Office documentation should be geared towards using the applications together, rather than just
bundting all the books in one box. This will require teams to author for on-line and understand the full
suite of applications. Word 7 is investigating the use of Word as 3 primary authoring and viewing
environment for online documentation.

»e% BCROSOFT CONFIDENTIAL *** -5- Capyright ® 1999 Microsoft Corporation——-—m-mmmrer -

AG 0103216
FéGNFIDENTIAL

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 6 of X0050

Second, T think we should be able to do more with VBA and the help system. Forexample, if T look up in
help how to insert a page break, I think there should be a small fragment of VBA code that 1 can execute
right away that will insert the page break. in general, 1 would view the VBA content of help as additional
Wizards that we don't include in the general Wizard user-interface (to avoid overwhelming the user).

Compound files {DocFiles)

1 do not think we are being clever enaugh in how we maxisiizé the use of compound files, Word & will put
embedded graphics in separate sireams, All of our applications should take advantage of this and be able
to Insert Picture from a Word document using this. The Shell offers a great opportunity to open up the
hierarchy within the compound fle. In the NeXT system, there is a analogous notion to compound files
{though it is just a fancy directory) and within the browser it is possible to expand into that hierarchy with a
special command. We should think about implementing such a command in the Chicago sheli.

Similarly, we have done a good job in standardizing the summary properties for a document and staring
these ifn-a standard compound file stream. We need to find nice ways of using this information across
applications, as Lotus does with Application Field Exchange, and within the Shell.

Database

On the system side of this Issue is the fact that Chicago has the requirements for a small foot-print ISAM
engine mostly for the registration database for OLE znd PuP. It might be interesting to expose thisas a
system supported local engine. However, since we are making the Jet engine available with VB and
VC++, the nced for this is diminished. Before we decide to expose such an ISAM 2s a system APT
(Win32) then we need to determine if any Microsoft applications wouid have a use for the ISAM. It is not
reasonable for Chicago to ship with Jet because of the oa disk size of the engine.

With regards to tools and applizations, we need to continue to push forward with VBA, Access, and VO
integration, Access does not SUppott any CuStom GANtrols, which is a major shortcoming for
programmability. Currently, Access 2.0 is supposed to ship by the end of the year, even though Access 1.1
just shipped. We should investigate the amount of work required to support either OLE 2 controls, if the
timing is right, or VBXs. If the impact on the schedule is not a disaster or if it is decided that the releases

ars too close together anyway, custom control support should be added.

Visual C++ will be adding database support in an interim release. The product will ship with the Jet
engine. just like Excel. There will also be Wizard support for developing applications in a manner similar
to the bound controls of VB, but tajlored for the C++ and MFC programmer.

Tools

By tools, 1 am referring to Visual Basic, Visual C++, and to some extent Access. There are two key issues
with tools. First, how well will our tools fit into the Chicago Office environment, 1 beleve that our tools
will be able to incorporate most of the features mentioned in the Points of Light document without any
trouble. Our tools, however, can do much more in the area of leveraging VBA, compound files, and most
of all the Shell. Both VB and VC++ (and Access) currently have proprietary project management user-
interfaces, which are essentially a folder in the Chicaga Shell. These toals should look at integrating at
least browsing functionality into a Shell extension. Similarly, these applications should consider using
compound files (for VC4+ this will probably be unireasonable becsuse of the censtant regeneration of
\OBI/.EXE files, but it might be more reasonable for VB/VBA 1o consider).

e MICROSOFT CONFIDENTIAL *** oG- Capyright @ 1999 Micresoft Corporation

_— e FLAG 0103217
CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 7 of Xxo0050

Second, we need to improve the support in our tools for Chicago sf:eciﬁc features in terms of developing
Chicago applications. VCH++ will suppert all of the standard Chicago user-interface, OLE 2, compound

" files, and all of the points of light in the MFC 3.0 application framework.d Visual Basic should, of course,

. offer the same level of support. Currently, VB already supports OLE 2 and autonation. An issue that
continues to cause problems is the fact that VB includes its own implementation of standard Windows
controls in the VB runtime, ‘This makes it difficult for Basic applications to rrack the look and feel and
behavior of standard Windows idioms. We need to have some architecture whersby VB applications and
runtimes do not need to be revised with every release of the system. This is especially true, if we plan on
having VBA on both NT and Chicago.

Currently only Access and to some degrae VC++ have application-like Wizards, and only Access has cue
cards., VB 3.0 included, however, an application setup Wizard, but it was not very well integrated. Our
tools need to think in terms of adding Wizards that will Took more familiar to users of our appiications.
This will become especially important as we look 1o integrating our productivity applications into complete
solutions that use our development tools.

As we start t¢ use development teols to drive application sales we need to be more aggressive at
incorporating our applications in the sample programs and demonstrations of our tools. Today this can
really only be done with VB 3 using OLE automation. 1f we truly believe that VBA will tie all of our
products together, then we need to invest in compelling demonstration scenarios to get customers,
partientarly corporate develapers, o believe this,

Our toals will be able to write some great add-in functionality for our applications, yet we do not have a
commeon add-in architecture, Today writing an add-in requires learning the architecture for each
application, and they are all different. This is something that VBA needs to define, and applications need

ta buy into.

Forms and Contmls.

Underlying our improved tools support will be 2 shared forms architecturs for Chicago applications. This
architecture is currently being designed. The plan is that all applications will use this architecture either
directly, by incorporating code using these forms. or indirecily. by using VBA. The main design point of
these controls is to implement them as OLE 2 lightweight in-proc servers, and enhance OLE 2 with an
event architecture. There is still the problem of having 2 generic coutainer zlong the lines of the Windcows
dialog manager that can contain these controls. There ave no plans for the dialog manager to be modified.
The VBA container, [Forms, will be the container used within most applications.

Applications should ship customizable versions of al of the standard dialogs that use this forms
architecture. Although the performance will be inferior to built-in dialogs, especially if SDM Is-used, users
will still be able to customize the dialogs as needed. For example, if an VBA version of the File Open
diaiog is provided, ther a Solution Provider or end-user could remove certain characteristics that are not
appropriate far a given use of the application, such as the directory location or network options.

AFX will be implementing a Control Wizard that will speed the development of these controls and
hopefully make it close to VBX in terms of ease of authorship. The performance of these forms and
controls is an area of concern. The current implementation of a variant of OLE controls, Cairo's
component forms, calls for the use of windowless controls. This is essentially implementing a light weight
windowing system for our controls.

3 An issue that trs raices It discussed at the end of this memo. If there are jo0 many Chicago-specilic Windows API changes, then
this will make the support for seamless Chicago/NT portability using MFC problematic.

+2# MICROSOFT CONFIDENTIAL *+** <7- Copyright ® 1999 Microsoft Corporation

—- _ FL AG 0103218
o B CONFIDENTIAL™ ~

' Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 8 of Xxo0050

Window management / application model

Otir applications are not going to move away from MDI for the Chicago release. The Chicago Shell,
however, is going to be an $PI application. This introduces a few problems that we need to work through.
First, we need to improve the MDI window management functionality, which means improving the MDI
APL There are a number of things people have been asking for, some of which Cairo has already
developed. MDI is a model programmers use and understand todzy and we nteed to continue 10 support it.

Because the Shell is SDI, we will need to work through two key problems with such an architecture. First,
we need to invent some pardigm to contro! the window proliferation problems. The Macintosh has always
had problems i this area. 'Refore System 7, many people wrote INITs (Mac TSRs) to add all sorts of bells
and whitles to the Finder for better Window management. System 7 introduced a subset of that
functionality. The Chicago Shell needs to do some competitive research and learn about the Finder -
window management problems before trying to solve this on their own. The second major SDI problem
has to do with sharing user-interface elements. Unlike the Mac we do not have 2 menu bar at the top of the
screen for all applications to share (another user-interfacé problem). This becomes especially interesting
given that we have gone to great lengths to have similar top level menu structure in our applications.
Having redondant File, Edit, Tools, View, Inert menus on every window is problematic.

The possible migration of our appiicatibns from MDI to SDI will need to be addressed in Cairo, 1 do not
think we will be able to provide a seamless SDI implementation that usese the MDI APY; in other words,
new code will need to be written and major gpplication restructuring will need to take place. '

Dial-up Services

If alt goes well, Chicago will have a dial-in registration service that ties into Microsoft's dial-up venture.
Applications should be thinking of clever ways to take advantage of the information we will have oo the
user to provide a custom Upgrade Your Worfd service. For example, tha first time a user pulls up the
Format Font dialog, the application could detect 2 smalt number of fonts and suggest dialing up and
purchasing the FontPack.

Process

Most of the work and burden for integration falls on the Word and Excel teams. They are in the strongest
position to undertake the development effort. 1f we develop some of the features discussed beiow in an
intelligent manner, then we should be able to enhance the cross-application, and cross Windows platform,
synergy of Access, PowerPeint, Project, as well as our development tools (VB, VO++).

The timing and critical nature of Chicago will make it imperative that we become more efficient at
adopting shared interfaces and implementations. IDG has the responsibility to review and drive a number
of these issues and has made significant progress with Word 6, Excel 5, and OLE 2. For Chicago,
however, I thirk we need to be more proactive, Each Office application should have at least one program
manager, possibly the same one(s) working with IDG today, devored 10 maxiinizing interoperability
scenarios. This person(s) should be technical enough to understand the implementation costs of scenarios.
This group of program managers should meet regularly and coordinate efforts across applications and with
the Interoperability group. I would also recommend that developers be assigned to wark on the shared
code as indicated above. it is critical for the applications developers to work directly with Chicago
developers on features, such as the Explorer, that span applications needs.

I would propose that we enumerate the interesting user-interface and application features that we wish our
applications to use and devélop them in an MSAPPS.DLL. This effort would be shared from the

et MICROSOFT CONFIDENTIAL **+ 8- Copyright € 1999 Microsoft Corporation

: L AG 0103219
T T T FCQNFIBENTIAL

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 9 of J#X0050

beginning, staffed with developers from both Word, Excel, and possibly the system (depending on how
rmuch we wish to keep these features to our application’s advantage). The design of these components
would be driven by the accomplishments made by IDG and the DAD program managers as for Word 6 and
Excel 5. New features would be specified following the same process, though with a shared
implementation there is a near-zero chance for variance between applications. It fs important to use shared
developers so the variations in host applications can be taken into account (Le. the Excel layer, WLM. etc))
Yes, this is amazingly difficult and applications can give many reasons why this is not possible, but it Is so
critical ta the success of Chicago and Chicage Office that is must be done.

T order for this to truly work, it is imperative that this shared code initiative be part of a controlled system.
If a group needs a status bar, then it must use the Chicago (or MSAPPS) control. If the group decides not
to, then it must somehow have extra resources and those resources must be removed, Tf the probiem is one
of features, then the shared code people must add those features, or a mechanism for the feature to be
extended. Alternatively in 2 more positive light, groups could also be rewarded for using shared code.

52 MICROSOFT CONFIDENTIAL *** & Copyright © 1999 Microsofl Cétpuration

. e FL AG 0103220
o CONFIDENTIAL

Case 2:04-cv-01045-JFM Document 303-18 Filed 11/18/11 Page 10 of pXoos0

Appendix: APl Issues -

An issue that has not been receiving much detailed atention is the additional APls being defined In
Chicago. Chicago is adding new APIs to USER and GDI, and modifying existing AP1s in USER and GDL
“These changes will not be reflected in the Windows NT Win32 subsystem when Chicago is released. In
addition, the WLM layer is being designed around the official Win32s API {as published today) and has
nat taken into account the extensions. WLM will ship before Chicago, yet the time frame between that -
ship date and the next WLM release-is tight (perbaps 6 months at most). In addition, the Microsoft
Foundation Classes, which have as a goal 1o have recompile portability betwesn NT and Windows 3.1, will
have to reconcile the differences in APIs, which may mean reducing the amount of Chicage specific
support or requiring customers to have conditional code in their applications.

The Chicago changes fall into two.categories: completely new APIs and functionality, and modifications to

existing APIs. I would suggest as a requirement that completely new APIs and functionality all be

implemented in 32 bits, or at least 16/32 code that is verified to function on NT. This code could then be

_ added to NT by just installing the DLL. Our applications could even ship these DLLs. The risk here is that
in order to avoid dependency on these features and APls, our applications, of even other [SV5, will simply

refavent the Chicago code themselves. Then in order to avoid testing issues, that code will get vsed on

both Chicago and NT, thus removing Systems dependencies from the application.

The modifications to existing APIs/subsystems that Chicago is working on are important and should get
done. The ouly advice I can offer, is that the changes need to be extremely well documented and tracked.
The NT subsystern and WLM both have USER code in them that will nead 1o integrate these changes.
Even subtle changes in bebavior, such as optimizing message ordering or changing the style of built-in
controls, must be clearly documented for those groups that regularly have access 1o the Windows source
code.

The problams, both PR and technical, that will be created by even a six month gap in Chicago and Cairo
are very real. | think we are going to confuse the marketplace and the press. We have spent a great deal of
effort pushing the Win32s APL, and people almost understand it today. As soon as we release code that
breaks that model. we will receive a great deal of criticism. 1t is almast like we abandoned our dream of a

single Windows APL

¥+ MICROSOFT CONFIDENTIAL *** -i0- Copyright @ 1999 Microsoft Corporation

— o FL 4G 0103221
) ' ' ’ e CONFIDENTIAL

