
Erik Stevenson

From:
To:
Subject:
Date:

Steven Sinofsky
billg; bradsi; davidcol; dennisad; jimall; jonl; paulma
FW: Novell AppWare -- first impressions
Friday, November 05,1993 10:52AM

This is very interesting. I was looking over the books and stuff and
was on the one hand impressed (they got all the right stuff for MIS
people--style guides, methodology, etc.) and on the other hand it is
scary since it is just another windowing API, and a fairly complete
one. This is direct competition to Windows, not VB or VC + +. Not
what I was expecting based on their white paper (which seemed to focus
on using the recently acquired Serius Developer development tool, with
some C code for customization).

We're not sure what Borland is going to do with this, but they are
making a lot of noise about it.

From: Scott Randell
To: SYS Denis Gilbert's direct reports; Garth Hitchens; Luis Talavera;
Richard Tong; Steven Sinofsky
Cc: Scott Randell
Subject: Novell AppWare -- first impressions
Date: Thursday, November 04, 1993 9:04PM

re: Novell AppWare Foundation SDK

===~
===========================
Well I've taken a quick look at the "NAWF" SDK. Here is my
overview and my impressions- >

What is it ?
It is just the SDK for the NAWF API. It does not include
any visual tools or compilers or anything else of interest.

It is I it contains:
A set of headers for the NAWF API
A set of libraries and DLLs for the NAWF layer on Windows.
Some sample code, an online API help file.
A few funky tools for dealing with their strange
resource scripts and other AWKfull things.

It is not I it does not contain:
No visual tools
No compiler
No extensive examples (ok they have Draw and Clock)

How done is it ?
It is a very complete product for an API -- with a lot of
documentation. It comes with many books covering the API
reference, overviews, a study guide, coding conventions,
and so on. They also have a training course for
people to learn about it.

They've done a good job, as SteveSi put it, targetting what
MIS people like -- thick books, spelled out conventions,
very structured taxonomies, courses for learning,
hand holding and customer support.
The documentation is well written -- but still a little raw

Page 1

MS7096165
CONFIDENTIAL

PX0102
Case 2:04-cv-01045-JFM Document 303-41 Filed 11/18/11 Page 1 of 5

, .

(including review comments to the writers).

The next release of NAWF will be available in February.
The SDK is only for evaluation purposes -- in the future
you will need to get a licence to incorporate the libraries.

What is the NAWF API:
It is a Windows-like C API that abstracts out platform
specific differences. They claim they currently run
under Windows (Win 3.x, not NT), the Mac and Unix (X Windows).
There is no OS/2 version yet. The SDK Kit I got from luisT
is just for Windows development.

The API is split into three major categories:
Operating System (base features)
Network Connectivity
User Interface (gui)

It is really just a C API that looks a heck of a lot like Windows.
It is not really object oriented in any way beyond what WndProcs
and switch statements in DialogProcs give you.
The flavor of the APls are quite different with different conventions
(naming conventions in things like passing access objects around)
and especially the way objects are instantiated,
There are lots of public and unprotected data structures __
not unlike many C API or portability toolkits I have seen
in the past.

There are a ton of APls -- they revel in their complexity.
Over 750 new APls (in addition to the platform specific APls
that you may choose to use). Over 150 data structures
(with all public data fields, remember this is C).
and over 3500 #defines for constants (and I thought
Win32 was complicated I-I.

They mention a C++ framework (NAWFFW Class library) layered
on top of the NAWF API. It was not part of the SDK.

How do you use it.
For Windows:
You develop and compile code using your favorite PC development
tools (MS C, VC + +, BC). edit your resources using your favorite
tools (Dig Edit, App Studio, Resource Workshop) and just compile
and link with the NAWF headers and libs.

They have a bunch of funky command line tools to process
resource files, not unlike Bedrock.
The resulting application has the proper native look and feel.

For the Mac, you use MPW (not enough stuff was provided
with the Windows SDK to do that of course).

========================~=========================
===========================
MORE DETAil:

The Operating System "Series":
This consists of general purpose functionality, abstraction
of the operating system and hardware. This is very
similar to the services provided by Windows KERNEL, SYSTEM and GDI.
Includes the following "components" or services:

Character (including locale)
Data (including collections, formatting, currency, ...)
Error (for exceptions -- but using GetlastError and

Page 2 MS7096166
CONFIDENTIAL

PX0102
Case 2:04-cv-01045-JFM Document 303-41 Filed 11/18/11 Page 2 of 5

error hooks)
File (including aliases, directories, ...)
Font (platform independent font selection)
Graphics (platform independent graphics -- hmm,

looks rather GDHike)
Instances (this is the unique notion of an

object created in a IMHO strange way, usually
from some resource information (i.e.
a super LoadResource -- not unlike MacApp).

Keyboard (access to key state)
Memory (abstracted memory management -- yes with

moveable blocks)
Messages (callback procs, postable messages -- when

used it looks a lot like Windows MSG)
Module (abstraction of HMODULE and other app global things)
Pointer {cursor on the screen)
Preferences (= = preferences)
Print (device independent printing, GDllike)
Records (for storing in collections, simple data structure

with a hell of a lot of complexity)
Resource (resource management ala Windows or Mac)
System (mise system services and general machine info)

The Network Connectivity Series:
This is one of the unique things they have that they play up
a lot -- they have a model where they are more network aware
than say Windows.
Includes the following "components" or services:

Clipboard (similar to Windows Clipboard)
Pipes (a simple pipe model with a ton of options

I don't understand -- with network
capabilities of course, this is Novell remember)

Tasks (platform independent API to get at mUlti-tasking
info -- doesn't do anything to the 2/3 of the
platforms currently supported).

The User Interface Series:
Thiis is the main USER level user interface functionality.
They have no "high-level abstractions" (save perhaps Tablel
like toolbars or status bars. They are designed around a very
simple UI, so there aren't a lot of UI Widgets (like spin buttonsl.

Includes the following "components" or services:
App (mise global app data structure, also provides

a Windows specific one too) .
Box (- = group box)
Button (- = Windows BUTTON cantrall
Dialog (souped up dialog manager)
Display (- =Windows STATIC cantrall
Edit Text (EDIT control, but abstracted to cover

Mac TextEdit)
Help (simple help hook, but like many components

they have a lot of optional bits -- some of
which may actually do something).

Item (screen drawable object -- good for static
graphics).

List (LISTBOX more or less)
Menu (- = menu)
Slider (a slider cantrall
Standard Package (- = COMMDLG)
Table (two dimensional grid control, really ugly)
Void (terrible name, but this is a place holder

Page 3

MS7096167
CONFIDENTIAL

PX0102
Case 2:04-cv-01045-JFM Document 303-41 Filed 11/18/11 Page 3 of 5

for custom output to be drawn on a dialog.
If you can't layout a dialog with the canned
Buttons IBUTTON), Display ISTATIC),
List ILiSTBOX) or Items Istatic graphics),
then you plop down your own custom "void"
component.

Window Ivery HWND-like as you probably could have
guessed).

For all the above when I say "similar to Windows XXX" that means it
looks functionally very similar, and even the flavor of the API
is similar. Of course the worlds are very very different when
it comes to looking at what code you write. It would require
a complete rewrite to convert a Windows app to NAWF or vice~versa
because there are so many basic differences.

For your amusement, here is the C code to their Hello World
sample application - >

< < File Attachment: SAMPLE.C> >

IMHO->
I personally wouldn't want to program to this API, so if it turns out
to be popular, then something like OWL or the NAWFFW
class library on top of it would be really valuable to
programmers who want the portability feature of NAWF
without having to deal with the crazy C API.
Windows programmers won't like it since it is not Windows,
Mac programmers won't like it since it is too Windows~like
Itoo un-Mae-like). Don't ask me about Unix programmers.

===========~======================================
===========================
What this means to us Iboth VC + + and MS as a whole) ?

I'm not really sure.
This is a competitive API, competitive to the Windows and Win32
APls. It is positioned as a portability toolkit.

Our Mac/Unix story is very similar -- instead of the NAWF
API, we have the Win32x API.

This isn't a Bedrock or a Taligent -- it isn't an object
oriented system API, it is a strange portability toolkit
that isn't functionally all that much better than Windows.
And IMHO it is pretty bad from an API point of view. This
won't get acceptance as a better API than Windows -- except
that it has a "portability story".
Bottom line NAWF is not a direct competitor to MFC.

OWL on AppWare would be a direct competitor to MFC on Windows.
This of course depends a lot on what Borland does with its
OWL2 and OWL2/Appware products.
The mapping from OWL2 to NAWF would be very weird regardless.

I personally think we can turn this to our advantage, something like:
"Geez Borland iust screwed over OWL 1 users with OWL 2 on Windows,
now they are abandoning Windows for that AppWare platform. What's
AppWare? .- it's a platform/API that Novell is in the process
of designing that looks a lot like Windows, but isn't Windows
-- isn't object oriented -- and by the way requires a runtime
licence you will have to pay to Novell .. :'

Since AppWare is _not_ vaporware (at least with this Early

Page 4
MS709616B
CONFIDENTIAL

PX0102
Case 2:04-cv-01045-JFM Document 303-41 Filed 11/18/11 Page 4 of 5

Adopter version) -- we can turn this to our advantage.
OWLlAppWare is vaporware (even a TeamS guy
on CIS said thatl so we should play up the fact that
OWLlAppware is a vaporware product on a very rough
infrastructure. The only danger I see is if "OWLlAppWare"
remains vapor or pseudo-vapor like Bedrock, Taligent,
Open Doc, ... -- you know how bad we are at competing
with vapor.
Since AppWare is concrete - if developers look at it I don't
think those developers will want it.

==
===========================
all for now

... scott

Page 5 MS7096169
CONFIDENTIAL

PX0102
Case 2:04-cv-01045-JFM Document 303-41 Filed 11/18/11 Page 5 of 5

