

EXHIBIT 1

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page1 of 153

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ROBERT A. VAN NEST — #84065
rvannest@kvn.com
CHRISTA M. ANDERSON — #184325
canderson@kvn.com
KEKER & VAN NEST LLP
710 Sansome Street
San Francisco, CA 94111-1704
Telephone: (415) 391-5400
Facsimile: (415) 397-7188

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street – Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

Attorneys for Defendant
GOOGLE INC.

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
VALERIE HO (SBN 200505)
hov@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. 3:10-cv-03561-WHA

Honorable Judge William Alsup

OPENING EXPERT REPORT OF DR.
OWEN ASTRACHAN

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page2 of 153

1
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

TABLE OF CONTENTS

I. INTRODUCTION .. 4

II. DOCUMENTS AND INFORMATION CONSIDERED 6

III. BRIEF SUMMARY OF MY OPINIONS.. 6

IV. BRIEF BACKGROUND ON JAVA.. 8

V. DETAILED STATEMENT OF THE BASIS FOR MY
OPINIONS ON APIs.. 10

A. What is an API?.. 15

B. Useful Analogies .. 16

C. Purposes of an API... 18

D. The Elements of an API ... 20

E. The Components of a Method Declaration 23

F. Organizing Related Methods into Packages 27

G. The Distinction Between An API and Its
Implementation... 28

H. Sun and Oracle Also have Implemented and Distributed
APIs from Other Software.. 35

1. Sun Implemented and Distributed APIs from
Previous Generations of Spreadsheets as Part of
StarOffice and OpenOffice.org 36

2. Sun Implemented and Distributed APIs from
Linux as Part of the Solaris Operating System 39

3. Oracle Implemented and Distributed APIs from
IBM as Part of the Oracle Database Server 44

I. Basic Example of Java Method Usage... 46

J. The APIs at Issue are Methods of Operation 47

K. The Java API Package Names Are Dictated By Function........... 51

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page3 of 153

2
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

L. The Java API Class and Method Names Are Dictated by
Function.. 55

M. The Java Names Are the Product of Mechanical Rules............... 64

N. The Organization of API Elements is Dictated By
Function And Does Not Reflect Creativity.................................. 66

O. The Same Analysis Applies to the Native Files........................... 67

P. Many API Elements are Drawn from the Public Domain
and Are Not Original to Java.. 69

Q. The APIs at Issue Are Necessary For Basic
Functionality and Interoperability.. 73

R. The APIs at Issue Are Demanded by the Industry....................... 74

VI. THE ANDROID PLATFORM IS NOT VIRTUALLY
IDENTICAL OR SUBSTANTIALLY SIMILAR TO THE
JAVA PLATFORM.. 77

VII. ANDROID’S DOCUMENTATION OF THE APIs AT ISSUE
IS NOT VIRTUALLY IDENTICAL OR SUBSTANTIALLY
SIMILAR TO ORACLE’S DOCUMENTATION................................. 80

VIII. THE TWELVE FILES OR PORTIONS OF FILES
ALLEGED BY ORACLE TO HAVE BEEN COPIED ARE
QUALITATIVELY AND QUANTITATIVELY
INSIGNIFICANT AND THEY ADD NO OR VERY LITTLE
VALUE TO ANDROID... 82

A. TimSort Files.. 83

B. Security Test Files .. 85

C. Comments in CodeSourceTest.java and
CollectionCertStoreParametersTest.java 88

EXHIBIT A: OWEN ASTRACHAN CV

EXHIBIT B: DOCUMENTS AND INFORMATION REVIEWED

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page4 of 153

3
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

EXHIBIT C: EXCEL AND STAROFFICE SPREADSHEET

EXHIBIT D: LX_BRAND SYSCALL TABLE

EXHIBIT E: SOURCE CODE FOR SLOCCOUNTER.PY AND

SLOCCOUNTERTOTAL.PY

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page5 of 153

4
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

I. INTRODUCTION

1. I am Professor of the Practice of Computer Science and Director of Undergraduate

Studies in the Computer Science Department at Duke University. I earned my AB degree

with distinction in Mathematics from Dartmouth College and MAT (Math), MS, and PhD

(Computer Science) from Duke University. I teach undergraduate computer science

courses using the Java, C++, and Python programming languages, and helped develop

broadly-used teaching materials, including a C++ textbook and Java language

programming exercises and documentation. I received a National Science Foundation

CAREER award in 1997 to incorporate design patterns in undergraduate computer

science curricula, an IBM Faculty Award in 2004 to support componentization in both

software and curricula, and was one of two inaugural NSF CISE Distinguished Education

Fellows in 2007 to revitalize computer science education using case- and problem-based

learning. My research interests have been built on understanding how best to teach and

learn about object-oriented programming, software design, and computer science in

general; and I am now working on developing a portfolio of substantial, interdisciplinary

problems that help explain how computer science is relevant to students in the social and

natural sciences. My qualifications and information regarding my prior testimony are

attached hereto as Exhibit A.

2. I am being compensated for my work in this litigation at the rate of $300 an hour. My

compensation does not depend in any way on the outcome of this litigation.

3. I have been asked by Google to:

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page6 of 153

5
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

a. opine on whether the Java Application Programming Interface (“API”)

specifications from which Oracle alleges certain parts of the Android platform are

derived are methods of operation;

b. opine on whether the allegedly infringing materials are driven by functional

considerations, considerations of interoperability and efficiency, industry practice or

demand, or drawn from public domain material;

c. opine on whether the allegedly copyrighted Oracle works relating to the Java

platform are virtually identical or substantially similar to the Android platform;

d. opine on whether the allegedly copyrighted Oracle documentation relating to the

Java APIs are virtually identical or substantially similar to Google’s documentation for

the APIs in Android; and

e. opine on whether the 12 files and/or portions of those files alleged by Oracle to

include material literally copied by Google are qualitatively and/or quantitatively

insignificant.

4. I understand that I may further be asked by Google to review submissions related to

copyright issues from Oracle’s experts, and to provide my opinions on issues raised by

any such submissions.

5. I understand that I may be called upon to testify in this case regarding my opinions and

analyses set forth in this report. If called upon to testify, I may use various

demonstratives, including tables or drawings, to assist in presenting my testimony.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page7 of 153

6
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

II. DOCUMENTS AND INFORMATION CONSIDERED

6. My opinions are based on my relevant knowledge and experience, as well as review of

the documents and information identified in Exhibit B.

III. BRIEF SUMMARY OF MY OPINIONS

7. "Java" may refer to three very different things: the Java programming language, the Java

Application Programming Interfaces (APIs), or software source code that references and

implements the APIs. In this case, except for a very small number of files addressed in

Section VII below (12 files out of approximately 57,000), it is my understanding that

Oracle does not allege infringement of the software source code referencing the APIs.

Nor, I am informed, does it allege infringement because Android is written in the Java

language. I have been informed that Oracle's claim of infringement is based on Google’s

creation of software source code written in the Java language that references and

implements Java APIs.

8. The Java language is a programming language. As with any language, it has a basic

syntax and grammar that must be followed for code written in the Java language to be

understood by a computer. Java’s syntax includes such utilitarian features as spacing,

punctuation, and the meaning of a limited number of defined words and phrases. Starting

in the mid-1990s, Sun Microsystems widely promoted the use of the Java language by

developers, businesses and the general public, without restriction. It is my understanding

that neither Sun nor Oracle, which acquired Sun, claims that the use of the Java language

to write software is infringing.

9. As explained in more detail starting at paragraph 24, an API provides programmers with

a way to access the functionality of a software service. For example, most programming

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page8 of 153

7
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

languages provide a way to calculate the square root of a number. Java does this by way

of an API. In order, for example, to calculate the square root of 25.0, a Java programmer

includes the text sqrt(25.0) in the text of his program. The text “sqrt(a)” — where “a” is

replaced by the variable or number that the programmer for which the programmer wants

to calculate the square root — is the API for the square root “method.”

10. As explained in more detail starting at paragraph 52, APIs are implemented by software.

For example, the sqrt(a) API can be implemented in many different ways. First, there are

many different mathematical algorithms for calculating square roots (much as there are

many different ways to make an apple pie). Second, there are many different ways to

write the programming code that implements any given algorithm (just like two people

who write down the same recipe can describe the various steps using different words and

sentences). However, if one sets out to implement an API, the one part that cannot

change is the API itself. For example, if one wants to implement the sqrt(a) API, one

cannot change the method name from “sqrt” to, say, “squareroot.” As I will discuss

below, referencing an API requires the use of the API’s method declarations (names,

data, and data types). To implement an API, one must use all these exactly as the API

requires them to be used. If even a minor change is made, code that references the API

will fail to operate. That said, as noted above, there are potentially different ways to

write the underlying implementing code for a given API. It is my understanding that

except for the 12 files discussed below in section VII, Oracle has not identified any literal

code copying by Google in this case.

11. In this case, it is my understanding that Oracle contends that referencing the API, via

method names, data names, and data types, is infringing, but as I discuss below in Section

V.J, the APIs at issue in this case are purely functional. In addition, with respect to

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page9 of 153

8
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Oracle’s allegation of literal copying of 12 files out of 57,000 files in Android, as I

discuss below in Section VIII, it is my opinion that the allegedly copied material in these

files is qualitatively and quantitatively insignificant.

12. It is my opinion that the APIs at issue are methods of operation.

13. It is my further opinion that any similarity between the names of elements (such as

package, class and method names) in the implementations in these APIs in the Java and

Android platforms is driven by functional considerations. It is also my opinion that any

similarity between the organization of elements in the implementations in these APIs in

the Java and Android platforms is also driven by functional considerations.

14. It is my opinion that many of the names of elements of the Java API were drawn from

usage in other languages or platforms that pre-date Java.

15. It my opinion that Google’s use of these APIs is necessary for interoperability and

efficiency, and/or driven by industry demand.

16. It is my opinion that the Android platform is not virtually identical or substantially

similar to the allegedly copyrighted works relating to the Java platform.

17. It is my opinion that any similarities between Google’s documentation of the APIs at

issue and Oracle’s documentation are driven by functional considerations and industry

practice regarding such documentation.

IV. BRIEF BACKGROUND ON JAVA

18. Oracle uses “Java platform” to mean a variety of interchangeable and overlapping

elements. These elements purportedly include the Java programming language itself, an

“object-oriented” programming language that uses syntax heavily based on prior

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page10 of 153

9
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

languages such as the “C” and “C++” programming languages. Also included in these

elements are a program known as a “compiler” that creates the “bytecode” in which Java

programs are executed; a virtual machine that executes the bytecode; and a set of core

libraries that facilitates the development of applications for the Java platform by

providing basic system or language functionalities. Java is a popular programming

language, and a variety of software, including internet services and mobile applications,

is written in the Java language.

19. Like any high-level programming language, the Java programming language contains

many rules of grammar and syntax that cannot generally be varied. For example, a

statement adding two numbers can only be written in certain ways, and the language

requires specific and precise key words to express such things as variable types (integers,

strings, or Booleans) and more complex object types such as dates or database queries.

In addition, the Java language, like many programming languages, employs key words

and operators (such as plus and minus symbols) that can only be used for specific

purposes and in specific ways; using them for other purposes will cause a program to fail

to function correctly. As a result, much of the structure and appearance of code written in

the Java programming language is dictated by these functional considerations.

20. Java’s specifications, including the specifications for the language API packages at issue

here, were published or made available in various forms, including in books and on the

Java website, starting with the release of version 1.0 in 1996. Several revisions have

been released since then, including version 1.5, which in my understanding is the most

recent version at issue in this case. Note that, at times, Java version 1.5 has also been

referred to as Java version 5.0. For consistency, I will refer to it as Java 1.5.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page11 of 153

10
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

V. DETAILED STATEMENT OF THE BASIS FOR MY OPINIONS ON APIS

21. Based on my review of Oracle’s responses to Google’s interrogatories, I understand that

Oracle is claiming that Google’s implementation of the Java API specifications for the

following packages infringe Oracle’s copyrights. (It is my understanding that Oracle,

with the exception of the 12 files discussed in Section VIII, has not identified instances of

the copying of specific code.)

java.awt.font

java.beans

java.io

java.lang

java.lang.annotation

java.lang.ref

java.lang.reflect

java.math

java.net

java.nio

java.nio.channels

java.nio.channels.spi

java.nio.charset

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page12 of 153

11
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

java.nio.charset.spi

java.security

java.security.acl

java.security.cert

java.security.interfaces

java.security.spec

java.sql

java.text

java.util

java.util.jar

java.util.logging

java.util.prefs

java.util.regex

java.util.zip

javax.crypto

javax.crypto.interfaces

javax.crypto.spec

javax.net

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page13 of 153

12
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

javax.net.ssl

javax.security.auth

javax.security.auth.callback

javax.security.auth.login

javax.security.auth.x500

javax.security.cert

javax.sql

javax.xml

javax.xml.datatype

javax.xml.namespace

javax.xml.parsers

javax.xml.transform

javax.xml.transform.dom

javax.xml.transform.sax

javax.xml.transform.stream

javax.xml.validation

javax.xml.xpath

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page14 of 153

13
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

22. Based on my review of Oracle’s responses to Google’s interrogatories, I understand that

Oracle is also basing its infringement claim on the following native code implementations

of Java API classes:

java_lang_Class.c

java_lang_Object.c

java_lang_reflect_AccessibleObject.c

java_lang_reflect_Array.c

java_lang_reflect_Constructor.c

java_lang_reflect_Field.c

java_lang_reflect_Method.c

java_lang_reflect_Proxy.c

java_lang_Runtime.c

java_lang_String.c

java_lang_System.c

java_lang_Throwable.c

java_lang_VMClassLoader.c

java_lang_VMThread.c

java_security_AccessController.c

java_util_concurrent_atomic_AtomicLong.c

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page15 of 153

14
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

sun_misc_Unsafe.c

23. Based on my review of Oracle’s responses to Google’s interrogatories, I understand that

Oracle also bases its copyright claim on code and comments in the following files that

allegedly have been copied from Oracle code or comments in Oracle’s source code:

Allegedly copied test files:

AclEntryImpl.java

AclImpl.java

GroupImpl.java

OwnerImpl.java

PermissionImpl.java

PrincipalImpl.java

AclEnumerator.java

PolicyNodeImpl.java

Allegedly copied comments (but not source code):

CodeSourceTest.java

CollectionCertStoreParametersTest.java

Allegedly contain copied source code:

TimSort.java

ComparableTimSort.java

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page16 of 153

15
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

A. WHAT IS AN API?

24. An Application Programming Interface (API) is "a particular set of rules and

specifications that software programs can follow to communicate with each other. It

serves as an interface between different software programs and facilitates their

interaction, similar to the way the user interface facilitates interaction between humans

and computers." Wikipedia, Application programming interface,

http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=43

7864024 (as of July 13, 2011, 00:30 GMT). An API provides a specified and

documented mechanism to invoke, operate, and interact with software services. The

interface itself is implemented by software, i.e., by source code that is written to provide

the functionality of the interface.1

25. APIs are used by software developers when writing software that will utilize the

functionalities operated through these communications. When used alone, the term API

can refer to either the set of rules and specifications, or to the software that implements

the rules and specifications and therefore is operated by the communication from another

program, as explained in more detail in paragraph 52. API can also refer to either a

specific “element,” “component,” or functionality within the API, or to a collection of

1 Newton’s Telecom Dictionary, 25th Edition, defines API similarly as “Software that an application

program uses to request and carry out lower-level services performed by the computer's ... operating

system.” Sun’s Java glossary (available at http://java.sun.com/docs/glossary.html) also provides a

definition for API: “The specification of how a programmer writing an application accesses the behavior

and state of classes and objects.” Although these definitions use different terminology, they are not

materially different from, and are in fact consistent with, the definition I have presented above.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page17 of 153

16
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

them. This report will generally use API to mean such a collection, and “API elements”

or “API components” to refer to the individual mechanisms within the collection.

B. USEFUL ANALOGIES

26. APIs are similar to the interfaces that a computer user uses to operate software, like a

keyboard command or button. In each case, the person seeking to use the program does

something to inform the program being used that he wants a specific action to happen,

and then that action happens. No deep expertise or understanding of the inner workings

of the computer system is needed by the person seeking to use the program. For

example, a computer user might type the “Ctl+P” key combination or click an icon that

looks like a printer, and then, in the dialog box that appears, choose the file to be printed

and the number of copies that should be printed. Typing “Ctl+P” or clicking the icon

would invoke the underlying printing functionality, and (once the number of copies is

specified) cause the software to print the document that number of times. The user does

not need to have substantial understanding of the underlying printing mechanism, he just

needs to learn and remember the familiar “Ctl+P,” give the necessary information (e.g.,

number of copies he wants printed), and the computer takes care of the rest.

27. Similarly, when invoking or using an API in a software application, a programmer should

not need to review or understand the underlying implementation or source code for the

API, as that code has already been written. Like using “Ctl+P” to print, he only needs to

know the name and functionality of the API. In order to write software that prints, a

programmer would read and learn their chosen operating system’s API for printing, and

then invoke that API from their program, telling the API critical information like what

document to print and how many copies to print. Just like typing the “Ctl+P” command

or clicking the printer icon, using the name of the API element in the software invokes

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page18 of 153

17
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the underlying functionality of the API and causes printing to happen, without the

programmer needing to have a deep knowledge of the particular mechanisms that allow

the API to function. Among other benefits, this means that a programmer can use an API

to create software that works on different printers (color, black and white, inkjet, etc.)

without knowing in detail how those different printers work, as long as the underlying

implementation supports them.

28. An API also can be analogized to the interface for driving a typical car. Every car has a

variety of elements that are part of the overall system of communication and operation

that a driver must understand and use in order to drive the car. These elements include

the gear lever, the turn signal stalk, the steering wheel, and the accelerator and brake

pedals. Some of these elements provide information from the driver to the car, while

others provide information from the car to the driver, and others do both things at the

same time. In combination, these elements form the interface to the “application” that is

the car, allowing a driver to “program” the car to do their bidding by using those

elements to operate the car.

29. Thus, for example, the driver of a car can make it accelerate by pressing the accelerator.

The further the driver presses the accelerator, the faster the car speeds up. The

accelerator can be thought of as an API for the car that makes the car go. Every car that

implements this API will have an accelerator, and each of them will share in common the

fact that the car speeds up faster the further the accelerator is pressed down.

30. So long as a driver understands this functionality — that the rate of speeding up a car

depends on how far the accelerator is pressed down — the driver need not know how this

happens. Similarly, if a driver understands how the other interfaces to the car’s

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page19 of 153

18
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

operation function (the turn signals, steering wheel, etc.), the driver need not know how

the engine, light bulbs, or transmission work.

C. PURPOSES OF AN API

31. The primary purpose of APIs is to allow one piece of software to speak to another piece

of software in a clearly defined, reusable, interoperable way. This simple goal has a

number of important ramifications and benefits.

32. Familiar interfaces make it simpler to use things and to use them more expertly. When

using a new car, most drivers do not think about how that particular steering wheel

works. For example, the wheels of the car might be turned by a rack and pinion system

or a recirculating ball system. But the steering wheel itself functions the same way

regardless of how the internal steering mechanism and system is designed, i.e., when the

driver turns the wheel to the left, the car moves in the left direction. This interface — the

same, familiar steering wheel — facilitates using the car, regardless of which specific car

is being used. The same thing happens in software — using (or providing) a standard

API allows the users of that API (software programmers) to move between any software

platforms that provide the same API, because their familiarity and existing skills in using

that particular interface transition over.

33. A defined, fixed API allows different programs to substitute for each other, which gives

users the ability to move from one piece of software to another. In this way, APIs enable

user choice between competing software providers, and therefore help to promote

competition, innovation and choice in the software market. For example, if a software

platform provides a set of APIs, a subsequently created platform that implements those

same APIs (for example, by writing different source code to implement those APIs) can

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page20 of 153

19
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

improve competition and reliability because developers who use the platform would

already be familiar with the APIs and so would be more able to leverage their existing

knowledge and complementary software. In our printing analogy, another program that

provides the same commands (like “Ctl+P”) will be much easier for a user to switch to.

In fact, once a user is used to “Ctl+P,” he will often be confused if a program uses

something else to control printing.

34. APIs also help software programmers by insulating programmers from underlying

complexity. This is referred to by programmers as “encapsulation.” In the car example,

the internal steering system can be changed specifically because the familiar steering

wheel interface (the car’s “API”) has hidden these implementation details from the

driver. This shielding and simplification is an important part of what an interface

provides — most users do not need to know the details, which has in the past allowed car

manufacturers to switch from old technologies to new ones without introducing a new

learning curve for consumers. The concept that moving the wheel left turns the car left

remains the same, and that allows consumers to rely on this familiar concept, regardless

of which car they use.

35. APIs also help programmers and the industry by allowing software to be reused. This is

important; new code is difficult and expensive to write and test, and so individual

programmers and corporations like to reuse code as much as possible. Even if they

cannot reuse an entire program (say, because the two pieces of hardware are very

different, as they are between a desktop computer and a phone) they still prefer to reuse

as many parts of the software as possible. APIs help make this possible by allowing the

same basic functionalities to be provided and used in a replicable, but portable, way.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page21 of 153

20
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

D. THE ELEMENTS OF AN API

36. An API typically consists of what programmers call methods or, equivalently, functions.

These two terms are synonyms, used somewhat interchangeably depending on the

programming language. Java programmers (and therefore this report) use the term

“methods.” Both represent the same thing — a piece of software that performs a specific

function and can be reused when needed. Methods are the primary mechanism by which

programmers invoke the functionalities provided by a software system.

37. In the user interface analogy, “Ctl+P” and the printer icon are methods. A user

interacting with a software program might use a menu or a menu shortcut to open a file,

or to save or print what has been opened, e.g., in a word processing program. Often an

icon of a printer or a disk can be pressed to invoke the same functionality as choosing a

menu item or the menu shortcut. In all three cases — pressing the icon, choosing the

menu item, or typing a keyboard shortcut — the same underlying software is invoked and

causes a specific action — printing the file or saving it, for example. The functions or

methods in an API are directly analogous — just as the user might click on an icon or

press a sequence of keys to use a keyboard shortcut to invoke more complicated

operations such as printing or saving, the program calls the function or method to invoke

and control a more complicated service or feature provided by the underlying software.

For example, when a Java programmer wants to get the square root of 25, his program

will have to contain the following text:

sqrt(25.0)

This will cause the underlying system to do the math and tell the program that the answer

is “5.0”. Similarly, to get the absolute value of -25, the program must contain abs(-

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page22 of 153

21
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

25) This will cause the underlying system to do the math and tell the program that the

answer is “25.”

38. Related methods are often grouped together to make them easier to use, frequently into

groups called (depending on the programming language) libraries or packages. In Java,

these groupings are called packages. Because Java is what is known as an “object-

oriented” language, related methods are themselves encapsulated in a class, and then

related classes are encapsulated into a package or a sub-package. To put it a different

way, the API packages include subparts or files known as classes, and within these

classes are methods. As an analogy, one can think of menus (like “File,” “Edit,” etc.) as

“packages” of menu items, which organize the menu items so that they are grouped

together in reasonable groupings. For example, to print using the menu, a user needs to

know that Print is under File, rather than under Edit.

39. As an example from the Java API, the java.lang package (according to Oracle’s

documentation) “[p]rovides classes that are fundamental to the design of the Java

programming language.” One of these “fundamental” classes is the “Math” class, which

Oracle describes as containing “methods for performing basic numeric operations such as

the elementary exponential, logarithm, square root, and trigonometric functions.” The

actual methods contained with the class are listed in this chart:

Method Name Functionality of the Method

abs Returns the absolute value of the argument.

(Four variants)

acos Returns the arc cosine of the argument.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page23 of 153

22
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Method Name Functionality of the Method

asin Returns the arc sine of the argument.

atan Returns the arc tangent of the argument.

atan2 Converts rectangular coordinates (two

arguments) to polar coordinates.

ceil Returns the smallest integer that is not less

than the argument, e.g., if the argument is 1.9,

will return 2.

cos Returns the cosine of the argument.

exp Returns e raised to the power of the argument.

floor Returns the largest integer that is not more

than the argument, e.g., if the argument is 1.9,

will return 1.

IEEEremainder Returns the remainder of two arguments as

prescribed by the IEEE 754 standard.

log Returns the natural logarithm of the argument.

max Returns the greater of two arguments, e.g., if

the arguments are 3 and 4, will return 4. (four

variants)

min Returns the lesser of two arguments, e.g., if

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page24 of 153

23
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Method Name Functionality of the Method

the arguments are 2 and 3, will return 2. (four

variants)

pow Returns the value of the first argument raised

to the power of the second argument.

random Returns a random number between 0 and 1.

rint Returns the closest integer to the argument.

round Returns the closest number to the argument.

sin Returns the sine of the argument.

sqrt Returns the square root of the argument.

tan Returns the tangent of the argument.

toDegrees Returns the result of a conversion of the

argument (an angle in radians) to degrees.

toRadians Returns the result of a conversion of the

argument (an angle in degrees) to radians.

E. THE COMPONENTS OF A METHOD DECLARATION

40. Every method has several important characteristics that collectively are referred to as the

“method declaration.” The first is simply the method’s name. Method names describe

the purpose of the method, so that a programmer can easily memorize and recognize the

purpose from the method’s name, and vice-versa. A simple example of this is the method

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page25 of 153

24
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

in the table above named “abs,” so named because its function is to calculate the absolute

value of a number. To use a method, the programmer must know the method’s name. If

the programmer does not know the precise name, or knows only something similar, he

cannot use the method, because the software cannot guess at what the programmer meant.

For example, if a Java programmer writes “squareroot(25.0)” instead of “sqrt(25.0)”, this

will result in an error instead of calculating the square root of 25.0.

41. The second important characteristic of essentially every method is the set of arguments

that the method expects to receive when invoked. When the method is called, the

programmer typically provides information to the method that informs the software

exactly what the programmer wants to happen, just as a user must usually specify how

many copies he wants printed after he clicks the print button. The information provided

to the method is called an argument (or parameter), and a method is said to “accept” the

permitted arguments. The ability of a method to accept an argument is what allows a

general purpose method to act on specific data.

42. For example, think of the “plus” or “add” button on a calculator. This is a “general

purpose” button — it can add any numbers one can type in, not just one specific set of

numbers. If one thinks of the “plus” button on a calculator as a method, the numbers one

asks the calculator to add (say, 2 and 2) are the parameters to the “plus” button — those

parameters determine the specific outcome of the general purpose button. Similarly, the

number of copies one tells the print dialog (or print method) to print is also an argument

— they again tell the general purpose function (“print”) a specific behavior (“print two

copies.”) In the “abs” function mentioned previously, there is only one argument, and

that argument is simply a number, whose absolute value the program wishes to calculate.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page26 of 153

25
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

43. These arguments or parameters must be defined when the API is first created, and are

typically limited. For example, it would not make sense to ask one’s printer to print

“hippopotamus” number of copies of a document — that argument must be a number. In

fact, the definition of a method in many languages, including Java, will indicate what

“type” of argument a function will accept, such as an integer, a string, or another data

type. A steering wheel, similarly, can accept arguments of left, right, or any angle in-

between, but cannot accept “up” or “down.” The functionality of each method constrains

what parameter(s) are acceptable, and if the proper parameters are not passed to the

method, any attempt to use the method will fail.

44. When a program uses a method and passes it the arguments, the method then typically

returns a result that the program can use for other purposes. This result is the final

important characteristic of the method, and is called the return (sometimes the return

value). In the calculator example, where plus is the method and the arguments are 2 and

2, the return value will be 4 — 2+2 returns 4. For the abs method, which computes the

absolute value of a number, when the argument is 2 or -2, the return value will be 2.

45. The purpose of the return value is to return information that can be used by the program

for other purposes. For example, after one asks one’s calculator to add 2 and 2, the

calculator returns “4,” which one can use as the first step in the next math problem one

intends to solve. Similarly, the return may be a message indicating the status of a method

— for example, a “print” method might return “OK” (telling the program that the printing

functionality has successfully completed) or “OUT OF PAPER” (telling the program that

the printing functionality has hit a snag). These status messages would in turn be handled

by other methods, possibly doing something like popping up an error message, or silently

concluding that all is well and allowing the user to continue with his work.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page27 of 153

26
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

46. To summarize, each method declaration has three parts — the name, arguments, and

return. As a shorthand, programmers may refer only to the name of the method, but to

fully know what method they are describing, it is necessary to know all three parts of the

method declaration. They can be defined succinctly as:

name: the method name, which indicates its purpose and is used by a

programmer or program to call or invoke the method.

argument: the data on which the method acts. The data passed as an

argument to a method is often manipulated and referred to within

the method itself.

return: the result of calling the method with specific arguments. This is

“returned” to the programmer.

47. The documentation for a method will combine these pieces to form a reference for

programmers using the API. For example, the brief version of the documentation for the

abs method is:

int abs(int a) Returns the absolute value of an int value.

While this may not be easy for a non-programmer to understand, it is quite

straightforward to a programmer:

 The first part (“int”) shows that the return will be an “int” (short for an

“integer”; i.e., a number). This tells the programmer what type of result to

expect when using the function.

 The second part (“abs”) is the name of the method.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page28 of 153

27
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 The part in the parentheses (“int a”) is the argument. Again, this uses “int”

to indicate that a single integer is expected; if the abs method is given

something other than an integer, such as “hippopotamus,” an error will

occur. (The letter “a” is a convenient name for the argument, and can be

changed without affecting compatibility.)

 The first, second and third parts discussed above comprise the “method

declaration.” The final part is a brief explanation of what the method

does.

In combination, this short statement will allow a programmer to know how to use “abs”

in their program to find the absolute value of a number. I will discuss documentation in

more detail in paragraph 145. This section is intended to explain how the various parts of

a method fit together.

F. ORGANIZING RELATED METHODS INTO PACKAGES

48. As noted in paragraph 38, most methods in an API are organized into packages of

functionalities that group related methods together. As with the method names

themselves, these packages are logically organized into functional groupings and named

so as to make it easy for programmers to remember and find the functionalities they need.

In Java, these groupings can be packages (the highest-level grouping, typically containing

many classes), sub-packages, or classes (the lowest level of grouping, typically

containing a handful of related methods). (See, e.g. “The Java Platform: A White Paper,”

Douglas Kramer, May 1996, available at

http://java.sun.com/docs/white/platform/javaplatform.doc1.html, and “Package

Members” in The Java Language Specification, Third Edition, available at

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page29 of 153

28
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

http://java.sun.com/docs/books/jls/third_edition/html/packages.html#7.1, for discussion

of packages, class, and methods.)

49. As an example of this grouping, take the “sqrt” method, which calculates the square root

of a number. This method is typically grouped together in a library or package with

other, related mathematical functions, such as “sin” and “cos” (short for the trigonometric

functions sine and cosine). Sqrt has been grouped with other math functions since at least

the Algol programming language in 1968, and is still grouped together with them in Java

and other modern languages, such as the Python and Ruby languages.

50. Methods that do not have related functionalities are not typically grouped together — for

example, a method that prints text to a screen would not typically be in the same class or

package as “sqrt.”

51. To use a particular method, the Java programmer has to know what class, and what

package, the method is in. A programmer calling the square root function or method in

Java, for example, needs to know that the method is in the Math class, and the name of

the method is sqrt. Frequently this is expressed in shorthand by combining the two

names, so that “sqrt” becomes “Math.sqrt.” The programmer also must know the other

key parts of the structure — specifically that the method takes one argument (a number)

and returns the square root of the argument. Once the programmer knows these things

the underlying functionality can then easily be invoked, allowing the programmer to

focus on the more complex task of writing their own software.

G. THE DISTINCTION BETWEEN AN API AND ITS IMPLEMENTATION

52. Every API, including the Java APIs at issue in this case, exists in two forms: the method

declaration of the API (comprising the elements mentioned above — name, arguments,

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page30 of 153

29
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

and return), and the implementation of the API (which includes those three elements as

well as the program logic that actually performs the steps necessary to accomplish the

purpose of the method). The method declaration can be combined with a brief, factual

explanation in the documentation so that developers can have a reference for the API,

much like a dictionary might help someone learn and reference a language. The method

declaration embodies the concept of the particular API.

53. Independent of, but related to, the API’s method declaration is an implementation of the

API — the actual underlying source code that implements the API and allows the API to

function. An implementation will have some portions that are similar to the

documentation, because both the implementation and the documentation must also

include the exact method declaration, including all the elements of the declaration, such

as the arguments and return values. However, a given API may have more than one

implementation, i.e., the underlying program logic for the implementation of the API will

differ from implementation to implementation. But each of the implementations must

necessarily share the elements of the method declaration — the package names and

related method elements — in order to interoperate with each other. If these elements are

not present and identical in different implementations of the same API, programmers will

not be able to use the same names and structures when using the API, since it is these

elements that allow each piece of the software to speak to each other. If these names or

structures are changed, software that references these names will fail to function, because

the software will not be able to find and access the functionality it needs. To see why

using the same names and structures is important, it may be useful to analogize this to

non-programming languages. It is only by having a common vocabulary of words like

“truck” that people can speak to each other. If the language is changed, even slightly —

as it is when a speaker of American English uses “truck” while a speaker of British

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page31 of 153

30
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

English uses “lorry” — then confusion arises. For programmers, similar confusion would

occur if two different implementations of the same API used different names, arguments,

and return values. For software, the result would be even worse than mere confusion,

since computers cannot guess at what the original software meant to say. Instead, faced

with a similar situation, software would fail to execute altogether. Different

implementations of the same API must use these same elements, in order to avoid

confusion, inefficiency, and incompatibility.

54. Other portions of the implementation not directly governed by the method declaration of

the API (i.e., what I have referred to as the method’s program logic) will vary between

different implementations, i.e., the source code comprising the different implementations

will be different. For example, different programming languages can be used to

implement a particular API. In the case of Android, both the Java programming language

and the C programming language were used to create code to implement the APIs at

issue. Any two given implementations, other than the parts required for compatibility

(i.e., the elements of the method declaration), are not likely to be identical if they are

written by different programmers or companies. However, because they are constrained

by the API and practical considerations such as programming efficiency and the

underlying hardware, some portions may appear similar. For example, since cars are

constrained by the requirements to have a steering wheel, gas and brake pedals, and four

tires, they will often be similar “under the hood” to the untrained eye, featuring an

engine, drive train, and brakes. But an expert will be able to distinguish a V8 from a V6

or direct fuel injection from a carburetor. Similarly, the source code that is “under the

hood” of an API implementation may appear similar to another implementation of the

same API, in large part because of practical programming constraints. At the same time,

implementations can occasionally look quite different if there are specific reasons for

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page32 of 153

31
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

such differences — the digital equivalent of choosing between a fuel-efficient but slow

four-cylinder (or even a hybrid) versus a hungry but powerful V8.

55. Typically, the written form of the software is captured in a specification independent

from any specific implementation. The specification is a written document that describes

the API, including the method declaration (name, arguments, and return values) as well

as specifying any requirements that the code must meet. Despite capturing important

information about the API, it would be incorrect to say that the API is the specification,

or vice-versa. The analogies to written words may again be useful — just as one does not

say that the definition of a lion in a dictionary is, in fact, a lion, so the API’s specification

is not the API, but rather a description of the API which may then take different forms.

56. This abstraction and conceptualization of the API is what makes it possible for new

implementations of APIs to be built. One of the key values of an API is that when

improvements are made “behind the scenes,” programmers who use the API do not need

to know that the change has occurred; they should only notice that the program is now

faster, more efficient, or more error-free. This can only happen because the programmers

(and the software they built) used the high-level abstraction represented by the API (e.g.,

the name) and did not work directly with the concrete, underlying implementation.

57. The full Android API documentation for the “abs” method (available at

http://developer.android.com/reference/java/lang/Math.html#abs%28int%29) can help

illustrate these issues:

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page33 of 153

32
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

public static int abs(int i)

Returns the absolute value of the argument.

If the argument is Integer.MIN_VALUE,
Integer.MIN_VALUE is returned.

Parameters

i the value whose absolute value has to be
computed.

Returns

the argument if it is positive, otherwise the
negation of the argument.

The documentation’s first line, “public static int abs (int i),” is the declaration of the

method. The declaration is the formal statement of a method’s structure, containing the

method’s name, the list of arguments it accepts, and the type of result it returns (the

“return value”). I have already shown similar text in the short version of the

documentation shown in paragraph 47. Here, both the input and the result are numbers

(“int” is short for “integer.”). There is effectively only one way to say this, and the only

thing the programmer chooses is the name of the method (“abs”) and the shorthand for

the argument variable name (“i”). Presumably, Oracle named this method “abs” in part

to increase efficiency and ease of learning for programmers who were familiar with other

preexisting programming languages, since this name has been used for this function in

many older programming languages, such as C.

The Android source code that implements the “abs” method documented above is:2

2 Available at

http://android.git.kernel.org/?p=platform/libcore.git;a=blob;f=luni/src/main/java/java/lang/Math.java;h=1da0b905c4

af9aaf930adf5b8b80d92193b7c462;hb=HEAD#l100.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page34 of 153

33
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

package java.lang;

...

/**

* Class Math provides basic math constants and operations such as
trigonometric

* functions, hyperbolic functions, exponential, logarithms, etc.

*/

public final class Math {

...

/**

* Returns the absolute value of the argument.

* <p>

* If the argument is {@code Integer.MIN_VALUE}, {@code
Integer.MIN_VALUE}

* is returned.

*

* @param i

* the value whose absolute value has to be
computed.

* @return the argument if it is positive, otherwise the
negation of the

* argument.

*/

public static int abs(int i) {

return i >= 0 ? i : -i;

}

The first line, “package java.lang;” is the name of the package of API elements in which

the abs method resides, and indicates that this file contains a class which is part of that

package. “public final class Math” is also part of this organization, reflecting the class

which contains the abs method. Both of these lines (which appear above in black), in this

exact form, must be present in order to accurately implement the API, so all

implementations of the Math.abs function will contain these two lines. (The variable

name, here “i”, is not part of the definition, and so can be different between different

implementations without impacting compatibility.)

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page35 of 153

34
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

58. The lines of text that begin with asterisks (which appear above in blue) are programmer’s

comments. Comments do not provide functionality to the software or affect the compiled

code that is distributed to users; instead, they document what the code does and explain it

to other programmers. In this case, they describe to a programmer the function of this

API, and may also contain information about how to use the API. These comments, in

turn, are used to automatically generate the documentation for the method.

59. Finally, the actual source code for the method is shown here in green and red. It starts by

repeating the declaration of the method — “public static int abs(int i)” (in green). It then

presents the program logic for the method — the single line “return i >= 0 ? i : -i;” (in

red). This red portion is what actually tells the computer how to perform the method’s

functionality. In this case, the program logic could be stated in English as “if the number

we are given is greater than or equal to 0, return that number, and otherwise return that

number but with the opposite sign.” Because creating the absolute value is simple, this

program logic is brief, but for more complicated methods many more lines of program

logic may be needed.

60. Of this substantial amount of text that constitutes the implementation and documentation

of the abs method, other than the required organizational lines I discuss in paragraph 57,

only the single line “public static int abs(int i)” (the method’s name and declaration,

underlined above) is identical between this implementation of abs (in Android) and

Oracle’s implementation of abs (in the works at issue). This declaration identifies the

method, matching the declaration in the documentation and specification. Use of the

same declaration is necessary if the two implementations are to be compatible, and an

essentially identical declaration is in fact present in any implementation of

java.lang.Math.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page36 of 153

35
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

61. Besides Oracle’s open source implementation of Java (typically referred to as OpenJDK),

the non-profit GNU Project has written a Java implementation called GNU Classpath,

and the non-profit Apache Foundation has written a Java implementation called Apache

Harmony. See, e.g., GNU Classpath documents at

http://www.gnu.org/software/classpath/docs/cp-hacking.html and Apache Harmony

documents at http://harmony.apache.org/faq.html and

http://harmony.apache.org/subcomponents/classlibrary/compat.html. Compatibility

between these implementations is desirable for a number of reasons (discussed in more

detail in paragraph 33) — primarily the benefit to software developers and consumers that

results from having choice and competition between API implementation providers. For

example, for compatibility and standardization reasons, the “abs” function discussed

earlier has the following identical method declaration not only in Java and Android, but

also in Harmony and GNU Classpath:

Java: public static int abs(int a)

Harmony: public static int abs(int i)

GNU Classpath: public static int abs(int i)

Android: public static int abs(int i)

The similarities are not limited to the abs method. Each of these projects implements the

API packages at issue in this case, using the same package, class, and method names.

H. SUN AND ORACLE ALSO HAVE IMPLEMENTED AND DISTRIBUTED

APIs FROM OTHER SOFTWARE

62. One way of seeing the distinction between API and implementation is by noting that

companies such as Sun and Oracle have, in the past, implemented pre-existing APIs.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page37 of 153

36
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1. Sun Implemented and Distributed APIs from Previous Generations of Spreadsheets

as Part of StarOffice and OpenOffice.org

63. Between 1999 and 2011, Oracle, and Sun Microsystems before it, developed and

distributed the StarOffice and OpenOffice.org “Calc” spreadsheet software, and this

software implemented and distributed APIs from previous generations of spreadsheets

created by other companies. As I will explain in this section, the Calc spreadsheet

software contains an API, and this API is in large part based on the APIs originally

developed for older spreadsheet software, including Visicorp’s Visicalc and Microsoft’s

Excel spreadsheet software. The implementation of the APIs in the Calc spreadsheet

program allows spreadsheet models developed in Excel, for example, to also be useful

and run in the StarOffice or OpenOffice programs.

64. Most spreadsheet programs provides “spreadsheet functions” that enable users to write

small programs — called “macros” — that manipulate data in a spreadsheet cell. For

example, the function “ABS” calculates the absolute value of the number in a given

spreadsheet cell, the function “AVERAGE” calculates the average value of the numbers

in multiple spreadsheet cells, and “NPV” returns the net present value of an investment.

These functions or macros are used by people using spreadsheets to create models

whether these people are professional software developers, engineers, lawyers,

investment bankers, scientists, or hobbyists These functions and the macros that they are

used by constitute an API, because they are a mechanism that allows creation of written

programs that communicate with the spreadsheet software’s functionality.

65. Spreadsheets created by different software companies frequently use function names and

argument structures from older spreadsheet programs. For example, the first column of

the following table shows the names of all the spreadsheet functions that were supported

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page38 of 153

37
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

in VisiCalc in 1979 — VisiCalc’s API. The other columns of the table show the function

names used to operate the same functionality in Lotus 1-2-3, Microsoft Excel, and

OpenOffice Calc. (The additional API elements or functionalities added in the later

programs are not shown in this table.) As the chart shows, the function names originally

used by VisiCorp’s VisiCalc in 1979 were then used by Microsoft Excel 2003 and

Oracle’s OpenOffice.org. This shows that the original VisiCalc API of 1979 is included

to this day in the Microsoft and Oracle products, with only one exception (VisiCalc’s

“ERROR” function, which has been replaced by #N/A or #VALUE in Excel and Calc).

VisiCalc (1979) Microsoft Excel
(2003)

Oracle
OpenOffice.org Calc
(Today)

@ABS ABS ABS

@ACOS ACOS ACOS

@ASIN ASIN ASIN

@ATAN ATAN ATAN

@AVERAGE AVERAGE AVERAGE

@COS COS COS

@COUNT COUNT COUNT

@ERROR #N/A or
#VALUE!

#N/A or
#VALUE!

@EXP EXP EXP

@INT INT INT

@LN LN LN

@LOG10 LOG10 LOG10

@LOOKUP LOOKUP LOOKUP

@MAX MAX MAX

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page39 of 153

38
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

VisiCalc (1979) Microsoft Excel
(2003)

Oracle
OpenOffice.org Calc
(Today)

@MIN MIN MIN

@NA NA NA

@NPV NPV NPV

@PI PI PI

@SIN SIN SIN

@SQRT SQRT SQRT

@SUM SUM SUM

@TAN TAN TAN

66. Attached as Exhibit C is a table showing the names of the spreadsheet functions in

Microsoft Excel 2003 and Oracle’s most recent version of OpenOffice.org Calc, which

was prepared based on the publicly available documentation available for Microsoft

Office Excel 2003 at http://office.microsoft.com/en-us/excel-help/excel-functions-by-

category-HP005204211.aspx and for OpenOffice.org Calc at

http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_Functions_listed

_by_category. Five rows from Exhibit C are reproduced here for discussion purposes:

Microsoft
Excel (2003)

Oracle
OpenOffice.org
Calc (Today)

AMORLINC AMORLINC

AND AND

ARABIC

AREAS AREAS

ASC

ASIN ASIN

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page40 of 153

39
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

67. Exhibit C shows that many of the functions that constitute the API of Microsoft Excel

2003 were also implemented in OpenOffice.org Calc. Functions on the left are

implemented in Excel, and functions on the right are implemented in Calc. In this sample

from Exhibit A, three of the functions (AMORLINC, AREAS, and ASIN) are

implemented in both spreadsheets, while ASC is implemented only in Excel and

ARABIC is implemented only in StarOffice.

68. As shown in Exhibit C, overall, of the 340 functions implemented in the Excel 2003

spreadsheet function API, 324 (95%) are also implemented in StarOffice.

2. Sun Implemented and Distributed APIs from Linux as Part of the Solaris Operating

System

69. As I will explain in this section, since 1999, the Solaris operating system, developed and

distributed by Oracle, and Sun Microsystems before it, has contained or been delivered

with APIs that are based on the APIs originally developed by the developers of the Linux

operating system. The implementations of these APIs in Solaris facilitates the use of

programs developed in Linux environments to run on Solaris machines.

70. The BrandZ project, also known as Solaris Containers, was a software system that Sun

implemented starting in 2004. BrandZ worked with other software, called a “brand,” to

translate a non-Solaris operating system’s functionality into the Solaris functionality, so

that software written for the other operating system would run on Solaris. Essentially,

each brand helped “translate” communications that used the other operating system’s

APIs into communication with similar Solaris APIs. In particular, Sun developed a brand

called the “LX Brand”. The purpose of the LX Brand software was to “enable[] Linux

binary applications to run unmodified on Solaris” (“BrandZ WebHome,” available at

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page41 of 153

40
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

hub.opensolaris.org/bin/view/Community+Group+brandz/WebHome). In order to

achieve this goal, several components of the Linux API are implemented by the LX

Brand software, including signals, system calls, and the “/proc” interface. (See “BrandZ

Overview” (available at

http://hub.opensolaris.org/bin/download/Community+Group+brandz/WebHome/brandzo

verview.pdf.)

71. For example, the “/proc” interface allows programs to interface with the Linux operating

system by reading and writing the contents of files in a special directory called “/proc.”

Reading and writing these files allows a program to discover the status of the operating

system and processes running on the operating system. A process can be a program or a

part of a program that the user is running and it can be part of the operating system, e.g.,

it might facilitate communication over the Internet, with a printer, or allow one program

to pass data to another program. In Linux environments and many Unix environments,

every process has a number that identifies it, the so-called Process Identifier or PID.

Processes also have names — for example the process that starts up the first process for

the operating system has PID one, but the name ‘init’ and a process designated for

cryptographic programs might have the name ‘crypto’ and would certainly have a

different PID than the ‘init’ process. One representative element of the /proc interface,

known as “/proc/[pid]/status,” allows a program to communicate with the operating

system about the status of a particular process. To initiate the communication, the

program asks for the contents of the /proc/[pid]/status file — that is a file whose name is

‘status’ that is located in the directory/folder corresponding to the process identifier of a

process, e.g., /proc/523/status is the file that gives the status of process 523. The

operating system responds to a request for information about a particular process by

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page42 of 153

41
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

filling the file named ‘status’ with text that shows the status of the process. After such a

request, the first eight lines of the /proc/[pid]/status file might, for example, look like this:

Name: [the name of the process]

State: [the status of the process]

Tgid: [the “Thread Group ID” of the process]

Pid: [the “Thread ID” of the process]

PPid: [the “Thread ID of the process’s parent]

TracerPid: [The “Thread ID” of the tracing process]

Uid: [ID numbers of users involved in the process]

Gid: [ID numbers of groups involved in the process]

72. The text on the lefthand side of the file (such as “Name: ”) is part of Linux’s API. These

are always present in /proc/[pid]/status. The text on the right is the information about the

specific process, and will be different each time /proc/[pid]/status is accessed. Changes

to this layout (for example, changing “Name” to “ID” or “Reference”) would break

applications that use this API. As a result, if another operating system wanted to be

compatible with this API, it would need to print “Name:,” “State:,” etc., in exactly the

same manner as Linux prints it.

73. The following chart shows the values — taken directly from the respective publicly

available source code — which Linux and Sun’s LX Brand use to create the text on the

left hand side of the /proc/[pid]/status file. In each entry in the chart, “\t” means “tab”,

“\n” means end of line, and the “%s” is replaced by the relevant information for the

particular process, so that “Name:\t%s\n” becomes

Name: [the name of the process]

when the /proc/[pid]/process file is accessed.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page43 of 153

42
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Linux LX Brand

"Name:\t%s\n" "Name:\t%s\n"

"State:\t%s\n" "State:\t%s\n"

"Tgid:\t%d\n" "Tgid:\t%d\n"

"Pid:\t%d\n" "Pid:\t%d\n"

"PPid:\t%d\n" "PPid:\t%d\n"

"TracerPid:\t%d\n" "TracerPid:\t%d\n"

"Uid:\t%d\t%d\t%d\t%d\n" "Uid:\t%u\t%u\t%u\t%u\n"

"Gid:\t%d\t%d\t%d\t%d\n" "Gid:\t%u\t%u\t%u\t%u\n"

"FDSize:\t%d\n" "FDSize:\t%d\n"

"Groups:\t" "Groups:\t"

74. Each line of the chart is identical, and this demonstrates that the output of the

/proc/[pid]/status API is the same between Linux and the LX Brand software, and

therefore that (in this respect, at least) Linux and the LX Brand software are compatible.

If these lines were different, then the resulting file would be different, and the LX Brand

software would not be compatible with Linux. Other elements of the /proc interface are

similarly implemented in the LX Brand software.

75. The LX Brand software also reimplements Linux kernel system calls. System calls are a

part of an operating system’s API; they allow programs written by users to access

resources managed by the operating system, e.g., to read and write files to kill processes,

or to allocate memory to use in a program. These resources are managed by the

operating system, but programs written by users to run on the operating system need

access to some of the resources to be able to run properly or at all. The LX Brand

software provides an emulation function which translates the Linux system call to an

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page44 of 153

43
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

equivalent Solaris operating system call, for each of 317 Linux system calls. A relevant

fragment of the publicly available source code that performs this translation, listing each

Linux system call, and the LX Brand function that implements the system call, is attached

as Exhibit D. This source code file indicates that there were 178 Linux system calls that

were implemented as part of LX Brand (the other 139 system calls were either not

supported or were able to directly use the equivalent Solaris system calls without

translation). Each of the LX Brand implementations of the Linux system calls use the

same name as the relevant Linux system call, with “lx_” prepended to distinguish them.

76. For example, the Linux system call “futex” was introduced to Linux beginning in 2002,

and Solaris does not have a “futex” system call. In order to provide compatibility for

Linux software running on the LX Brand, the LX Brand software provides an

implementation of futex called lx_futex, which has essentially the same name as futex,

takes similar arguments, and behaves similarly. The actual program logic that

implements the LX Brand lx_futex function and the Linux system call are not similar,

suggesting that they were independently created.

77. The 177 other system calls implemented by the LX Brand follow the same pattern: the

Linux system call name, plus the lx_ prefix, is used to identify a function that takes

similar arguments and behaves similarly to the Linux system call for which the function

is named.

78. Sun’s “LX Brand” software implements only a subset of the Linux operating system API,

and so is not completely compatible with Linux. Sun’s overview presentation states that

it “support[s] a subset” of the /proc API and the “minimum needed” devices (“BrandZ

Overview” at 23 and 24) and the design document notes that the “CLONE_PARENT”

argument to the clone(2) system call is also only partially implemented (see “BrandZ

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page45 of 153

44
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Design Doc”, section 3.5.1 (“Linux Threading”), available at

http://hub.opensolaris.org/bin/view/Community+Group+brandz/design). This partial

implementation still aids compatibility and programmer efficiency, because it is still

better for the programmer to use some of the APIs than to have to completely rewrite the

software to use new APIs.

79. Solaris has also incorporated specific APIs from the Linux C Library (“glibc”) into the

Solaris C Library. For example, the “uucopy()” system call, according to Sun’s BrandZ

Design Doc, “seems to be generically useful, so the uucopy() will be implemented in

[Solaris] libc” and, in fact, Solaris gained an implementation of the uucopy system call in

2006, shortly after BrandZ was introduced (see Solaris’s common/syscall/uucopy.c).

3. ORACLE IMPLEMENTED AND DISTRIBUTED APIs FROM IBM AS PART OF

THE ORACLE DATABASE SERVER

80. As I will explain in this section, the Oracle Database server distributed by Oracle since

1979 contains an implementation of the API originally developed by IBM for the

“System R” database.

81. The System R database’s SQL API was first described in an academic paper published by

IBM employees in 1974 (“SEQUEL: A Structured English Query Language,” DD

Chamberlin, et al.), and elaborated in a subsequent paper published in 1976.

82. The 1974 SEQUEL paper defined the following API elements or functionalities:

SELECT FROM

WHERE

GROUP BY

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page46 of 153

45
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

SUM

COUNT

AVG

MAX

MIN

83. IBM supplemented the functions in the 1974 paper in a subsequent paper published in

1976 (“System R: relational approach to database management,” M. M. Astrahan et al.),

adding several new elements or functionalities to the SQL API: HAVING, ORDER BY,

CURSOR, INSERT INTO, and DELETE.

84. Each of the API elements or functionalities referenced in paragraphs 82 and 83, and

defined in the 1974 and 1976 papers, were implemented by Oracle in 1979 and are still

present in current releases of the Oracle Database server. Because these API elements

are implemented in the Oracle Database server, a command using the API elements

“SELECT FROM … WHERE …” would also be able to operate, with minimal changes,

with current Oracle Database servers, as it did with the original IBM System R software

(see “Oracle SQL: The Essential Reference,” David C. Kreines (2000), Chapter 1,

“Elements of SQL,” available at http://oreilly.com/catalog/orsqlter/chapter/ch01.html).

85. For example, because the Oracle system implements the API elements or functionalities

defined in the 1974 paper, it will still execute commands written using the 1974

SEQUEL API. The 1974 paper gives this short command that uses elements defined in

the 1974 paper:

SELECT NAME

FROM EMP

WHERE SAL

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page47 of 153

46
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

SELECT SAL

FROM EMP

WHERE NAME = Bl.MGR;

86. Because this command was written using API elements (in bold) originally defined by

IBM but later implemented in the Oracle Database server, this command should still

function in a modern Oracle Database server, and indeed, some sources report that this

exact command was used in early demonstrations of the Oracle database (see “Oracle

SQL: The Essential Reference,” David C. Kreines (2000), p. xiv and Chapter 1,

“Elements of SQL”).

I. BASIC EXAMPLE OF JAVA METHOD USAGE

87. When a programmer is writing an application, and wants to use a particular functionality,

he must invoke the functionality by using the appropriate method. If a programmer

writing in the Java programming language wants to use Java’s square root functionality

to find the square root of 25, he would do that by incorporating the following language in

his program:

double result = Math.sqrt(25.0);

88. The argument 25.0 is passed to the method Math.sqrt when the method is called, and

“5.0” is returned by the method. In this example, the return value is then stored in the

variable named “result” for use elsewhere in the program.

89. To write this example, a programmer who had never previously used Java would likely

have started by guessing that square roots were in the class “Math,” looking at that class’s

documentation, finding the familiar “sqrt” method, and then reading the documentation

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page48 of 153

47
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

for that method to understand what result is returned and what special cases need to be

considered in writing code. He would then write the fragment of code above, and in the

future, having learned to use this part of the API, he would not likely have to refer to the

documentation again.

90. Note that at no point does the programmer need to know how the program logic that is

invoked by the sqrt method actually calculates the square root — it could use a Newton-

Raphson method, logarithms, or another mathematical algorithm for calculating the

square root. As previously noted in paragraph 34, these details are “encapsulated” —

hidden behind the scenes. This focus on knowing and understanding the API name and

functionality, rather than understanding how the method’s underlying program logic

works behind the scenes, allows programmers to work more efficiently.

J. THE APIS AT ISSUE ARE METHODS OF OPERATION

91. I understand that section 102(b) of the Copyright Act states, “In no case does copyright

protection for an original work of authorship extend to any idea, procedure, process,

system, method of operation, concept, principle, or discovery, regardless of the form in

which it is described, explained, illustrated, or embodied in such work.” I also

understand that a method of operation has been described by the First Circuit as “the

means by which a person operates something, whether it be a car, a food processor, or a

computer.” I further understand that the Ninth Circuit, citing section 102(b) of the

Copyright Act, has stated that the functional requirements for compatibility are not

protectable. Under either of those definitions, as I will explain in more detail below, it is

my opinion that the Java API specifications at issue in this case are methods of operation.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page49 of 153

48
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

92. As previously mentioned, in some computer languages, methods are referred to as

“functions.” Both the terms function and method suggest — correctly — that functions

and methods are literally a functional way to operate software. Once the method that is

part of the API is called and the right parameters are passed to it, the API invokes

functionality provided by the underlying software system. This “operates” the underlying

software system to create the return value, just as use of the car steering wheel makes the

car (through the steering system) take action to steer the car, the “plus” button makes a

calculator add two numbers, and the “print” command makes the operating system print a

paper copy of a document.

93. That an API is a functional method of operation is implicit in the definition of an API:

the entire purpose of an API is to allow one program to “interface” with another

“application.” This interfacing is not a social or creative chat, but a formal, functional

command from one program to another: “Do this thing for me, and report back when you

are done.” The program in command is using the API to operate the underlying program;

and the underlying program, likewise, is being operated by means of the API. In fact, it

is typically difficult, if not impossible, to operate the underlying system in any way

except through an API.

94. As demonstrated above in the example of Math.sqrt, using the name is necessary to

invoke the underlying functionality. It is also the only way to invoke the underlying

functionality — one cannot, for example, change “sqrt” to “square_root” in the example

above and still expect the code to work. Nor could one change the number or type of

arguments. Programs, unlike the human operators of our calculator and car analogies, are

not flexible — they must be fed precise information in order to operate.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page50 of 153

49
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

95. Like “Ctl+P”, the print icon, or the steering wheel, APIs provide mechanisms that operate

underlying functionality, causing the libraries at issue to perform activities and return the

information requested by the programmer — that is to say, by the “operator” of the

software in question.

96. As an example of how APIs in Java are methods of operation, I will consider three

classes in the java.util package that allow developers, and the software they write, to

operate on dates and times: Date, Calendar and TimeZone. As the names convey, these

classes are used by programmers to create, manipulate, and use calendars and dates in

Java programs. As software is increasingly deployed throughout the world, it is

important that developers be able to simply create and manipulate dates and times in a

way that works across all cultures and time zones. These Java classes provide such an

API. These classes are used together, and the methods in these classes mirror the

functionality and operation non-programmers would expect if you needed to create and

use dates and times. For example, to use dates and times, first a programmer has to

record them. A Date allows that by representing a specific instant in time. While one

might expect this would be something like January 22, 2009, a Date actually represents a

specific millisecond on a specific day of a month of a year, and then provides methods

that translate that millisecond into a particular date, automatically translating (if

necessary) into other calendars (like the Chinese or Hebrew calendars). Having provided

a way to store the date, a programmer manipulating dates would likely want to be able to

perform a variety of actions on the date, and it is these actions that are most clearly

methods of operation. For example, a programmer might want to know whether one Date

comes “before” another, so that they could sort a list of files by time-of-modification, or

display a list of songs arranged by date of recording. Not surprisingly, the Date class

provides a method to test if one date comes before another called “before.” The code to

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page51 of 153

50
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

execute that test and determine if a Date A comes before a Date B is written as

“A.before(B).” This method executes the test and returns “true” if A is chronologically

before B, and returns “false” otherwise. The Date class also has methods to determine if

a date comes after another date and if two dates are equal. The names of these methods,

respectively, are after and equals, providing a clear example of how the form/name of the

methods follow their function. The Date class also provides a getTime() method that

returns the exact time in milliseconds. The Calendar class contains methods used to

create a calendar, e.g., for a specific time zone, year, and/or a specific international

location. The Calendar class has methods that allow the programmer to determine the

first day of the week, which is SUNDAY in the United States, but MONDAY in France,

for example. This method is Calender.getFirstDayOfWeek() and it returns a value such

as Calendar.MONDAY or Calendar.SUNDAY — two values of the calendar class that

are clearly functional in representing days of the week. These classes are typically used

together with the TimeZone class, which provides convenient methods for creating and

using the timezones that occur in the world. For example, the method

TimeZone.inDayLightTime(d) determines whether the Date d is in daylight saving time

in the given time zone.

97. Methods can also invoke more concrete functionality. For example, the class java.io.file

gives programmers the ability to do operations on a file. This includes useful methods

like “createNewFile” (which creates a file), “getName” (which gets the name of the file),

and “delete” (which deletes the file). In each case, the programmer invokes the

underlying functionality — such as creating or deleting a file — by using the name of the

method. Once a file has been opened, the methods in the java.io class can be used to read

and write the file; for example, use of the method name “readLine” will invoke software

that reads a line from the file.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page52 of 153

51
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

98. In each of these cases, whether operating on simple data like a date, or more complex

things like a file or web page, the method names are the way in which the underlying

functionality is invoked, providing information and taking actions as needed by the

program. The method name is, quite literally, the method of operation, just as the gas

pedal is the way that an engine is invoked.

K. THE JAVA API PACKAGE NAMES ARE DICTATED BY FUNCTION

99. It is my understanding that names are not entitled to copyright protection. However, even

if they were, it is my opinion that the Java API package names are short, fragmentary,

and functional. It is my understanding that short, fragmentary names that are dictated by

function are not protectable under copyright law.

100. It is my understanding that the following API packages (and, in some cases, certain

subpackages of these packages) are at issue in the case. In each case, the name of the

package and the basic organization of the classes and methods within each package are

merely descriptive of the functionalities in those packages.

java.lang

The java.lang package and its subpackages java.lang.ref, java.lang.reflect, and

java.lang.annotation are part of a group of classes that facilitate interacting with and

programming related to the Java language. The package name (“lang”) and contents of

the classes and methods in this package reflects this emphasis on the core Java language.

java.math

The java.math package provides the programmer with access to classes that facilitate

arbitrary precision arithmetic with integers, e.g., integers with no upper or lower limit.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page53 of 153

52
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The package name (“math”) and contents of the classes in this package reflect this

underlying functionality.

java.net

The java.net package, and its extension javax.net and subpackage javax.net.ssl, provide

classes for the programmer to implement network connections at both a low- and high-

level. The package name (“net”) is short for “network” and therefore reflects this

underlying functionality.

java.io and java.nio

The java.io and java.nio packages group together classes for dealing with input and

output. Input and output are called “I/O” in long-standing programmer jargon, explaining

the name of the io package. (The nio package is so-named because it was an attempt to

present a “new” io (nio) package.) The java.nio hierarchy of classes also contains the

subpackages java.nio.channels, java.nio.channels.spi, java.nio.charset

java.nio.charset.spi. The nio package provides classes that facilitate more efficient

(faster) input and output. The nio package are designed to interact with each particular

operating system’s efficient I/O mechanisms, so that the Java programmer can use the nio

classes knowing that they will likely be faster than the java.io classes that were not

originally designed for efficiency.

java.security and javax.security

The java.security package, its subpackages java.security.acl, java.security.cert,

java.security.interfaces and java.security.spec, and its extensions, javax.security.auth,

javax.security.auth.callback, javax.security.auth.login, javax.security.auth.x500,

javax.security.cert, provide classes and functionality related to security, as the names

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page54 of 153

53
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

suggest.

java.sql

The java.sql package, and its extension, javax.sql, facilitates interacting with relational

databases or data in a format similar to that defined in such a database. These packages

are based on the “SQL” standard (Structured Query Language), a standard named and

defined in the late 1970s and early 1980s, and the name of the packages (“sql”) reflects

the name of this standard.

java.text

The java.text package facilitates writing software to handle text, dates, numbers, and

messages in a format that is independent of a particular natural language — allowing

programmers to cope more easily with languages other than English.

java.util

The java.util packages provides utilities and collection classes. Its subpackages

java.util.logging, java.util.jar, java.util.prefs, java.util.regex, and java.util.zip provide

utilities that are more specialized, e.g., to deal with logging, archives (jar files), user

preferences, regular expressions, and zipped or compressed files, respectively. These

functionalities are diverse, but “utilities” are a traditional name for small, single-purpose

tools in the computing world, and so grouping these together under the name “util” is a

straightforward mapping of functionality to traditional naming.

javax.crypto

The javax.crypto package and its subpackages javax.crypto.interfaces and

javax.crypto.spec provide classes to write code that adheres to cryptographic protocols.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page55 of 153

54
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

“Crypto” is common programmer shorthand for “cryptography” and so makes for a

natural mapping of name to functionality.

javax.xml

The package javax.xml and its subpackages javax.xml.datatype, javax.xml.namespace,

javax.xmlparsers, javax.xml.transform, javax.xml.transform.dom,

javax.xml.transform.sax, javax.xml.transform.stream, javax.xml.validation, and

javax.xml.xpath deal with XML—eXtensible Markup Language.

In some cases, a given package may require the functionality of another package in order to

function correctly, much like the upper floors of a building need the lower floors of the building

to remain standing. The final two packages listed below, while not themselves basic to the

functionality of modern operating systems, must be present in order for the previously listed

packages to operate correctly and provide their complete, intended functionality to users:

java.awt.font

The package java.awt.font allows programmers to interact with low-level font

information.

java.beans

The java.beans package facilitates software interaction with JavaBeans — traditionally

viewed as a reusable software component conforming to specific conventions so that the

component can be manipulated with visual and graphical tools.

101. Because these names all describe specific functionalities, and (as will be discussed in

paragraph 113) they are limited by design rules to short, fragmentary words and phrases,

there is no meaningful creativity in the package names.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page56 of 153

55
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

L. THE JAVA API CLASS AND METHOD NAMES ARE DICTATED BY

FUNCTION

102. In the Android packages at issue, there are 472 public classes, 150 public abstract classes,

and 176 public interfaces. A public class is a class that is accessible to programmers who

are using the API; a private class is internal to the library and can only be used by other

parts of the library.

103. API element names, such as class names, must be factually descriptive of the underlying

functionality so that programmers can recognize, understand, and remember them when

reading and writing a program. While this is formally enshrined in the Java Language

Specification (see discussion in paragraph 113), the rule has more pragmatic roots that

date back to the earliest computer languages. The core reason that API component names

are short and reflect underlying functionality is that inventive and creative names only

loosely tied to the functionality would be difficult for programmers to remember.

104. For example, the method “sqrt” is short, simple, and memorable for programmers — and

possibly even for non-programmers; a reader of this report may not need to be reminded

more than a few times that “sqrt” means “square root.” It is technically possible to

instead call the square root method “Steve,” just as it would be possible to build a

calculator whose buttons use colors instead of numbers and mathematical symbols. But

such a calculator would be difficult to use; a user would have to memorize the colors and

their mapping to the underlying numbers and symbols. That would take some time and

effort — so much time and effort, in fact, that users are likely to use a traditional

calculator instead. Similarly, when the name of a method does not reflect the underlying

functionality (as in the case where a square root method is called “Steve”) the method

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page57 of 153

56
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

would become difficult to learn and remember. As a result, in practice all API element

names are simple and factually descriptive.

105. A method whose underlying functionality is to test to see if two file names are equivalent,

for example, could be called “equals” or “equivalent” but likely not much else. Even the

longest API element names, such as SQLNonTransientConnectionException, are still tied

to the underlying functionality. In that case, the name has three parts which demonstrate

the underlying functionality: the word “SQL” reflects that this relates to the SQL

database language (a language that pre-dates Java, and was not created by Sun or Oracle),

and the word “exception” reflects that this relates to an “exception” (similar to an error

message). Both of these terms have been used in software programming for over 30

years, predating Java by some time. A programmer would recognize that the third part of

the name (“Non-Transient Connection”) reflects underlying SQL functionality that is a

term of art from outside the Java language. Since the names of all of these underlying

concepts are fixed, or nearly so, the name of the method reflecting these concepts is also

necessarily inflexible. The fact that the name reflects the underlying functionality is not

merely convenient — it is practically required to allow the system to be comprehensible

to programmers.

106. Class names, like the method names discussed above, are highly functional, in many

cases showing only small variations directly related to the class functionality. For

example, consider the seven classes whose names end in Event as shown below. These

seven classes come from three different packages.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page58 of 153

57
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Class Name From
Package

What is the
Functionality?

Why is it in this
Package?

HandshakeCompletedEvent javax/net/ssl A class describing an

event that takes place

once a Handshake is

Completed.

“Handshakes” are part

of the Secure Sockets

Layer (SSL)

networking protocol,

and so this is grouped

with other “net” and

“ssl” features.

PreferenceChangeEvent java/util/prefs A class describing an

event that takes place

when a Preference

Changes.

Utilities that user track

Preferences must have a

way to track what

happens when the

preferences change, and

so this is grouped with

“util” “prefs.”

NodeChangeEvent java/util/prefs A class describing an

event that takes place

when a Preference

Node Changes.

“Nodes” are a common

way to organize data.

Since these nodes are

used to store user

preference data,

information about the

nodes (including

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page59 of 153

58
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Class Name From
Package

What is the
Functionality?

Why is it in this
Package?

changes to them) are

grouped with other

“prefs”-related

functionality.

SSLSessionBindingEvent javax/net/ssl A class describing an

event that takes place

when an SSL Session

Binds.

As part of the

implementation of the

SSL networking

protocol, this is grouped

with other “net” and

“ssl” classes.

ConnectionEvent javax/sql A class describing an

event that takes place

when a Connection

occurs.

Because this is an SQL

Connection, it is

grouped with other

SQL methods.

RowSetEvent javax/sql A class describing an

event that takes place

when an SQL RowSet

is changed.

Because this is an SQL

Rowset, it is grouped

with other SQL

methods.

StatementEvent javax/sql A class describing an

event that takes place

when an SQL

Because this is an SQL

Statement, it is grouped

with other SQL

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page60 of 153

59
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Class Name From
Package

What is the
Functionality?

Why is it in this
Package?

Statement is changed. methods.

These names are functional in specifying the purpose of the methods. The noun part of

each name that precedes Event describes the event, but there is essentially no creativity in

choosing the noun. For example, the HandShakeCompleteEvent describes an event that

takes place after the hand-shaking protocol in making an SSL connection has been

completed. Similarly, the RowSetEvent class describes an event that takes place when a

“rowset” is changed in an SQL database. The names have been chosen not because of

deep introspection or creativity on the part of the author, but by simply describing what

functionality is contained in the class.

107. Another example of class names that conform to simple rules describing the underlying

functionality are the 18 classes whose names end with InputStream and 15 that end with

OutputStream. These classes are part of a variety of packages — some are grouped with

other input and output functions in java.io and java.nio, but several are part of the

packages java.util, java.util.zip, java.util.jar, java.security and javax.crypto. The table

below shows thirteen of the InputStream classes below and their corresponding packages.

Again the names for the classes are functional and limited by the responsibilities of each

class: the LineNumberInputStream class reads data while keeping track of line numbers

while the CipherInputStream uses a cryptographic cipher for reading data.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page61 of 153

60
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Class Name From

Package

What is the

Functionality?

Why is it in this

Package?

FileInputStream java/io A stream of inputs from

a file.

This is part of the

basic input/output

(“io”) functionality.

PushbackInputStream java/io Adds the ability to push

data back into an input

stream.

This is part of the

basic input/output

(“io”) functionality.

ZipInputStream java/util/zip A stream of inputs from

a zipped file.

Reading from a

zipped file is part of

the basic zip file

(“zip”) functionality.

JarInputStream java/util/jar A stream of inputs from

a “jar” file.

Reading from a jar

file is part of the basic

jar file (“jar”)

functionality.

LineNumberInputStrea

m

java/io Adds the ability to count

the line number to an

input stream.

This is part of the

basic input/output

(“io”) functionality.

StringBufferInputStrea

m

java/io A stream of inputs from

a string buffer.

This is part of the

basic input/output

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page62 of 153

61
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Class Name From

Package

What is the

Functionality?

Why is it in this

Package?

(“io”) functionality.

CipherInputStream javax/crypto A stream of inputs that

have been passed

through a cipher.

Ciphers are part of

cryptography, and so

functionality to use

ciphers is part of the

cryptography

(“crypto”) package.

InflaterInputStream java/util/zip A stream of inputs from

an “inflater” that

“inflates” a zipped file.

Inflaters are part of

“zipping” a file and

so this is part of

util/zip.

FilterInputStream java/io Adds the ability to filter

to an input stream.

This is part of the

basic input/output

(“io”) functionality.

ObjectInputStream java/io A stream of inputs from

an object.

This is part of the

basic input/output

(“io”) functionality.

DigestInputStream java/security Creates a “messages

digest” of a stream of

inputs.

Message digests are

part of certain

security routines, so

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page63 of 153

62
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Class Name From

Package

What is the

Functionality?

Why is it in this

Package?

this class is part of the

java/security

packages.

ByteArrayInputStream java/io A stream of inputs from

a byte array.

This is part of the

basic input/output

(“io”) functionality.

108. Java class names are short, fragmentary words and phrases. This is true of other Java

API elements, like method names, as well. Most Java API element names are short word

phrases, typically of 1-3 words in length. (See paragraph 115 for more detailed statistics

on method name length). One example is the class “PrintStream,” which (not

surprisingly) adds printing functionality to output “streams.” Elements in the PrintStream

class include the method named “append,” which appends the argument to the output

stream, the method named “print,” which prints the stream, and the method named

“close,” which closes the stream. In fact, every method in the PrintStream class, with

only four exceptions, is one word. Two of the exceptions are two words — “setError”

and “checkError,” which, as one would expect, set and check the error state of the output

stream. The other exceptions are “printf” and “println” — abbreviations for “print

formatted” and “print line.” Besides being brief and fragmentary, these abbreviations

have been in use by programming languages since the 1970s, in Algol and C.

109. Other classes, such as the SecurityManager class, have slightly longer names. In this

class, three-word phrases (such as “checkPackageDefinition”) are predominant and there

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page64 of 153

63
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

are some four-word phrases (such as “checkCreateClassLoader”). But even here, the

naming follows a consistent pattern — 30 of the 40 methods are named

check[SomeProperty], consistently describing their underlying functionality, which is to

check the status of the property referred to by the method name. For example,

“checkCreateClassLoader” checks to see if it is possible to create a new class loader.

110. Because many classes need the same functionality, and the names of the methods in

question are dictated by functionality or by rules (see next section), it is not surprising

that many of the names are repeated. The most common names in Oracle’s

implementation of Java 1.5 are:

Method name Number of
Times
Repeated

Functionality?

toString 194 Converts an object to a String.

equals 157 Tests to see if two objects are equal.

hashCode 147 Creates a “Hash Code” (a numeric
representation) of a class.

run 139 Runs the code in the object.

read 96 Reads (typically to a stream of characters).

write 94 Writes (typically to a stream of characters).

remove 88 Removes something (exactly what is
removed depends on the class).

get 74 Gets the value of an object.

close 72 Closes a stream.

size 68 Returns the number of items in a collection
of items.

clear 61 Clears the content of the thing referenced.

clone 59 Clones the thing referenced.

TOTAL 1249 These 10 method names are used by
roughly 1/6 of the methods in Oracle’s

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page65 of 153

64
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

implementation of Java 1.5.

111. The organization of the methods into classes, like the organization of classes into

package, is driven by functionality and the requirement that programmers be able to

efficiently find and use these methods. This is why, for example, all of the math

functions listed in the table in paragraph 39 are in the same java.lang.Math class.

112. Because these names all describe specific functionalities, limited by design rules to short,

fragmentary words and phrases, there is no meaningful creativity in the class or method

names.

M. THE JAVA NAMES ARE THE PRODUCT OF MECHANICAL RULES

113. Java API element names frequently repeat certain key terms and patterns, following

mechanical rules laid out in the Java Language Specification and elaborated over time by

practice. The rules provide suggestions for structure and naming, stating, for example,

that “[m]ethod names should be verbs or verb phrases, in mixed case, with the first letter

lowercase and the first letter of any subsequent words capitalized.” Similarly, names of

class types are to be “descriptive nouns or noun phrases.” Java Language Specification,

First Edition, Section 6.8 “Naming Conventions,” available at

java.sun.com/docs/books/jls/first_edition/html/6.doc.html#11186. Both of these rules are

followed by all the examples shown in this report, except for those methods that are

drawn from older programming languages (like “sqrt”).

114. Additional word patterns crop up repeatedly throughout the Java APIs. “InputStream”

and “ChangeEvent,” cited above, are two examples affecting a few dozen names, but

others go much further. For example, the Java Language Specification rules for method

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page66 of 153

65
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

names state that methods that return the value of a variable should start with “get,” and

method names that set the value of a variable should start with “set.” Other rules require

specific methods to be in many classes, such as “hashCode” and “toString.” In Oracle’s

implementation of Java 1.5, nearly one-third of the method names at issue (2,578 of the

7,796 methods) are determined by these rules, including roughly 2,000 that begin with

either “get” or “set,” and 164 named simply “equals.” Testing whether one thing is

equal to another thing is an extremely common operation for programmers, and so it

makes sense that many different methods for testing equality would exist. At the same

time, it makes sense to make sure that the operation has the same name everywhere — it

would unnecessarily complicate the learning process if it were “equals” in one place,

“sameAs” in another place, and so forth. These constraints yield the resulting name

(“equals”) — which is wholly functional, dictated by efficiency constraints and not

creativity.

115. An additional 2,347 method names were single words, like “run” or “add.” The

remaining 2,871 methods are not long or complicated — they are, on average, only 2.344

words “long” (counting a method name like locateURL as two words and findBestMatch

as three words). In Android, of the 9297 total methods, 3220 are unique methods, 2676

or 28.8% are one word names, 2909 are required names (like the “get” and “set”

examples above), leaving 3,712 other methods whose average word length is 2.41.

116. Following these mechanical rules and seeking to create consistency reduce the amount of

creativity and work necessary to write the API, and, more importantly, reduces the

amount of work necessary to learn and memorize the API. As a result, any good API

design will have naming rules like the Java API naming rules contained in the Java

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page67 of 153

66
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Language Specification, which result in names that are functional and primarily dictated

by efficiency constraints.

117. It is also my opinion that the rules and naming conventions imposed by the Java

Language Specification further constrains any creativity associated with the API names.

N. THE ORGANIZATION OF API ELEMENTS IS DICTATED BY

FUNCTION AND DOES NOT REFLECT CREATIVITY

118. The same restrictions that apply to naming also apply to the organization of methods.

Just as the name must be tied to functionality so that the API is easy to find and

remember, the organization into related groupings must also reflect underlying

functionality so that programmers can discover and use the elements efficiently. For

example, methods related to security, such as AccessController.checkPermission and

Signature.sign, are most sensibly organized into packages primarily related to security —

java.security and javax.security.

119. The practical requirement that all API element names and package organizations be

related to the underlying functionality restricts the packages in which any class can be

placed, and restricts the classes in which any method can be placed. The fourth column

in the tables in paragraphs 106, and 107 show how and why various classes fit into their

respective packages, and various methods fit into their respective classes, which can help

demonstrate this. For example, ZipInputStream is a class which allows creation of an

“input stream” which can read from a compressed file (known as a .zip file). Because it

relates to .zip files, developers will look for it with other classes and methods related to

.zip files, and so it is grouped with them in an appropriately named subpackage called

java.util.zip.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page68 of 153

67
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

O. THE SAME ANALYSIS APPLIES TO THE NATIVE FILES

120. It is my understanding that Oracle has alleged that a number of files written in the C

programming language are at issue. These files are part of the implementation of the

Java API. For example, the file name java_lang_reflect_Array.c (which I understand is

one of the files at issue) reflects the name of the java.lang.reflect.Array class. Similarly,

the C function names within the file java_lang_reflect_Array.c reflect method names

within the java.lang.reflect.Array class. As with the implementation files in the Java

language discussed above, these files written in the C language must use these names and

organizing principles in order to implement the API in a compatible and interoperable

manner. If Android could not use these names in these files, Android could not create a

compatible, efficient implementation of these APIs.

121. For example, the file java_lang_Class.c has these 29 C language functions:

Dalvik_java_lang_Class_desiredAssertionStatus

Dalvik_java_lang_Class_classForName

Dalvik_java_lang_Class_getClassLoader

Dalvik_java_lang_Class_getComponentType

Dalvik_java_lang_Class_getDeclaredClasses

Dalvik_java_lang_Class_getDeclaredConstructors

Dalvik_java_lang_Class_getDeclaredFields

Dalvik_java_lang_Class_getDeclaredMethods

Dalvik_java_lang_Class_getInterfaces

Dalvik_java_lang_Class_getModifiers

Dalvik_java_lang_Class_getNameNative

Dalvik_java_lang_Class_getSuperclass

Dalvik_java_lang_Class_isAssignableFrom

Dalvik_java_lang_Class_isInstance

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page69 of 153

68
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Dalvik_java_lang_Class_isInterface

Dalvik_java_lang_Class_isPrimitive

Dalvik_java_lang_Class_newInstance

Dalvik_java_lang_Class_getSignatureAnnotation

Dalvik_java_lang_Class_getDeclaringClass

Dalvik_java_lang_Class_getEnclosingClass

Dalvik_java_lang_Class_getEnclosingConstructor

Dalvik_java_lang_Class_getEnclosingMethod

Dalvik_java_lang_Class_getGenericInterfaces

Dalvik_java_lang_Class_getGenericSuperclass

Dalvik_java_lang_Class_getTypeParameters

Dalvik_java_lang_Class_isAnonymousClass

Dalvik_java_lang_Class_getDeclaredAnnotations

Dalvik_java_lang_Class_getInnerClassName

Dalvik_java_lang_Class_setAccessibleNoCheck

Each of these functions corresponds exactly to a so-called native method in the class

java.lang.Class. For example the C language function

Dalvik_java_lang_Class_isAnonymousClass corresponds to the method

AnonymousClass in the class java.lang.Class; the C function

Dalvik_java_lang_Class_setAccessibleNoCheck corresponds to the method

setAccessibleNoCheck in the class java.lang.Class, and so on for each function in the file.

122. The other .c files share similar characteristics to their corresponding .java files. The

functions in the .c files typically correspond exactly to a corresponding public method in

the related .java file or to a private method used to implement the private method. For

example, in the file java_lang_Runtime.c ,the function

Dalvik_java_lang_Runtime_nativeLoad corresponds to the private method nativeLoad in

java.lang.Runtime which is used in the implementation of the public method

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page70 of 153

69
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

java.lang.Runtime.load. In my opinion, there is no expressiveness in the names used in

the C files, because they are directly derived from the functional names in the .java files

(as explained above), and are required for efficient implementation of those files.

P. MANY API ELEMENTS ARE DRAWN FROM THE PUBLIC DOMAIN

AND ARE NOT ORIGINAL TO JAVA

123. It is my understanding that names are not entitled to copyright protection. However, even

if they were, it is my opinion that many of the Java names are drawn from the public

domain.

124. Java, like many other programming languages, is based on features of previous well-

known languages, such as C and C++, including their grammar and syntax. See, e.g.,

http://java.sun.com/docs/books/jls/first_edition/html/1.doc.html (“the lexical structure of

Java . . . is based on C and C++”); see also

http://www.gotw.ca/publications/c_family_interview.htm (James Gosling, inventor of

Java, quoted as saying “You can go through everything in Java and say ‘this came from

there, and this came from there’”). Reuse of grammar and syntax from already-familiar

languages allowed developers to leverage their existing knowledge and more quickly

adopt Java. Similarly, authors of new programming languages often use old method and

class names when appropriate, in order to help developers reuse their skills and transition

to new languages, and to help make sure the ideas are time-tested. See, e.g., James

Gosling’s “Feeling of Java” paper, Computer, Vol. 30, Issue 6, June 1997, where he

writes “Java feels very familiar to many different programmers because Sun had a very

strong tendency to prefer things that had been used a lot over things that just sounded like

a good idea.” As a result, many API element names in modern languages are drawn from

the public domain. For example, package names like java.io, java.util, and java.net

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page71 of 153

70
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

reflect industry shorthand for common functionality like input/output, utilities, and

networking, respectively. These packages with common names then, in turn, contain

methods whose naming reflects industry custom and representation of the underlying

functionality of the method. Some examples of functions that are very similar in Java

and the pre-existing C and C++ languages as a result of their functionality and industry

custom are shown below:

Name Originated in? Java equivalent What is it?

char At least C; see C Reference

Manual, Dennis Ritchie,

1975 (available at

http://www.cs.bell-

labs.com/who/dmr/cman.pd

f)

char A data type holding a

character; used repeatedly

in method names, such as

C++ “getchar” and Java

“getChars.” Other data

types, such as int and

double, also date back to

C and at least the 1970s.

int abs (int i) At least C; see C Reference

Manual.

public static int abs

(int a)

A function, returning the

absolute value of the

argument.

printf() At least C; see C Reference

Manual.

printf() (part of the

java.io package)

A function, printing a

formatted string to the

screen or other output

device.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page72 of 153

71
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

125. Indeed, many of the names and concepts in Java have been used by the industry for

decades. For example, the C Reference Manual references “int,” “double,” and “char,”

all used in Java. The “Bool” data type, which became “Boolean” in Java, dates back to at

least Algol in 1968, and is a direct reference to Boolean logic — invented in the 1800s.

126. Another example of this is the java.util.regex API package, which implements “regular

expressions” — a standardized way of testing if a given string of characters matches a

particular pattern. Regular expressions were first formalized in 1968 (“Programming

Techniques: Regular expression search algorithm,” Ken Thompson, Communications of

the ACM, Vol. 11, Issue 6, June 1968) and were known by the abbreviated name used by

Java (regex) at least as early as 1983 (see, e.g. http://groups.google.com/group/net.lang.c/

browse_thread/thread/6409987225e13a31/50da7fdd143184bd?q=regex#50da7fdd143184

bd). Java.util.regex has two classes: Pattern, and Matcher. Method names in the Pattern

class are compile, flags, matcher, matches, pattern, and split, while method names in the

Matcher class include matches, pattern, reset, and start. Each of these names —

particularly the extremely common “pattern” and “matcher” — are used in publicly

available regular expressions software that predate java.util.regex, and all of them are

discussed in Mastering Regular Expressions, Jeffrey E. F. Friedl, O'Reilly and

Associates, 1997, which Oracle’s documentation for java.util.regex cites. Sun also used

third-party source code (Jakarta Regexp) to implement java.util.regex, and this code also

had references to many of these terms, including “compile,” “pattern,” and “match.”

127. Similarly, the java.sql and javax.sql packages are also based in part on pre-existing terms

widely used in the industry. The package names themselves are a reference to the SQL

standard, originally introduced in the academic literature as SEQUEL in 1974 (SEQUEL:

A structured English query language, Proc. ACM SIGFIDET Workshop, May 1974, pp.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page73 of 153

72
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

249-264). The classes and methods frequently are named after SQL concepts, and in

particular (according to Sun’s documentation at

http://jcp.org/aboutJava/communityprocess/first/jsr054/jdbc-3_0-pfd-spec.pdf) on the

X/Open SQL Call Level Interface (CLI), which dates to the first half of the 1990s

(available at http://pubs.opengroup.org/onlinepubs/009654899/toc.pdf). For example,

java.sql includes classes named “Array,” “Blob,” “Clob,” and “Ref,” which are the

names of data types from the SQL standard. Similarly, the SQL CLI standard defines a

method called “prepare” that operates on a StatementText. Java.sql’s Connection class

has a method called prepareStatement that has similar functionality. The SQL CLI

standard also uses “commit” and “rollback” to discuss specific actions that can be done to

a database, and java.sql’s Connection class has matching “commit” and “rollback”

methods that perform the actions discussed in the standard.

128. Java.util.zip is another example where the name of the package, and at least some API

element names within the package, are references to terms that substantially predate

Java’s use of the terms. In this case, “zip” is a reference to the zip file format that has

been in use since before the creation of Java. Class names in this package include

“Adler32” (named after the Adler-32 algorithm invented by Mark Adler and licensed to

the public as part of the zlib library) and “CRC32” (named after the CRC-32 algorithm,

which dates back to the 1970s). Within the java.util.zip classes, method names include

“deflate,” “inflate,” and “setDictionary,” which are very similar both to general industry

terms for these processes but also to the specific function names “deflate,” “inflate,” and

“deflatesetdictionary” that are in the publicly available open source library (zlib) that

predates, and is incorporated by, Java. (See http://www.zlib.net/manual.html)

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page74 of 153

73
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Q. THE APIS AT ISSUE ARE NECESSARY FOR BASIC FUNCTIONALITY

AND INTEROPERABILITY

129. In my opinion, the functionalities grouped into each of the API packages at issue (as

listed above) are basic to most modern operating systems and particularly to mobile

systems. As a result, it is necessary to include these functionalities in the Android

platform. For example, the java.net package contains functionality relating to

networking, and every modern mobile software platform must have networking

functionality. If this functionality was not included in Android, Android would not be a

competitive, modern platform.

130. Once Google decided to provide the ability for developers to write applications using the

Java programming language, compatibility and interoperability with the existing body of

software, tools, and knowledge about the Java APIs was an external factor constraining

Android’s options. This essentially required Google to include the APIs at issue.

131. Because Android is written primarily in the Java language (over which I understand

Oracle does not claim copyright protection), Google was practically required to include

the APIs at issue. There would be little benefit to merely using the same grammar and

syntax; in order for existing code in a language to be compatible and interoperable with

new software written in the same language, the API elements that constitute the language

must also be present, and named and organized identically. Even the slightest changes to

the names or organization of API elements will thwart compatibility and interoperability,

because existing code that used those elements would not run properly, and programmers

would have to learn new API element names. For example, I have previously discussed

the method “sqrt,” which computes the square root of a number. If the method were

changed even the slightest (say, to “sqroot”), then existing source code written in the Java

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page75 of 153

74
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

programming language would not compile. Even more work on the part of the

programmer would be required if, for some reason, the organization, arguments, or return

values of the methods needed to be changed. It is not necessary to be a programmer to

understand how this could be jarring; changing the shortcuts for copy and paste from

Ctl+C and Ctl+V to something else would require every user of word processors to

change their behaviors, which is why those two keyboard commands have been used

unchanged across many programs since the first graphical user interfaces. As previously

mentioned in paragraph 35, this sort of compatibility and interoperability is important to

the industry, since (in the worst case) it allows programmers to reuse known, tested code

fragments — an important practice in the industry — and in the best case, where

compatibility is complete, it allows reuse of entire programs without modification.

Therefore, the APIs at issue were included in Android in order to allow Android to be

interoperable with existing code written in the Java programming language.

132. It is worth emphasizing that reuse of the API in this way does not mean that the

underlying program logic implementing the API was copied.

133. In my opinion, the Java APIs are necessary for functionality, interoperability and

programming efficiency.

R. THE APIS AT ISSUE ARE DEMANDED BY THE INDUSTRY

134. In my opinion, industry demand requires APIs that are compatible with Java, rather than

APIs that are similar to, but not compatible with, Java.

135. Industry and developer practice would tend to make it very difficult for Google to choose

a different API, or modify an existing Java API, when the Java language is used and

supported by Google. While curious developers do teach themselves new APIs, as a

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page76 of 153

75
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

general rule they prefer not to be forced to retrain on new APIs unless there is an

extremely good reason to do so. This is not simply a matter of losing the time spent

learning; learning new APIs also means buying new books, losing the ability to reuse

code fragments, and temporarily losing the fluency that comes with expertise in a

particular language’s idioms and structures. Indeed, a significant goal of the discipline of

programming has always been to create reusable tools and build on what has been

developed before, and the value of sensible reuse of existing APIs has been understood to

be a significant part of this.

136. It is not just individual developers who strongly prefer existing languages. Companies

also prefer to write programs in existing languages. Doing so allows them to reuse

existing source code and tools; even where they cannot reuse entire programs, reuse of

fragments of code is very common. Such code reuse helps make software better by

allowing the reuse of tested, well-understood code, but it is only possible where platforms

allow the same APIs to be used. For example, existing code written in the Java language

which references the “abs” method would not run on a new platform unless the new

platform supported this method and the class and package in which this method resides

by implementing the API. As a result of these factors, the industry as a whole — both

programmers and the companies who employ them — strongly prefer to work with APIs

and API elements with which they are familiar.

137. It is not a coincidence that many software developers are familiar with Java APIs. Sun

went to great lengths to encourage developers to learn and use Java. This began when

Sun made the Java language, documentation, and API implementation available at no

charge in 1996, apparently with the intent to ensure that programmers throughout the

industry knew and had internalized the Java language, including these APIs. Sun also

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page77 of 153

76
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

worked extensively with educational institutions to help make the Java language a

common tool for introductory programming classes. For example, there was active

collaboration between Sun and the College Board in promoting Java as the language to be

used in the Advanced Placement Computer Science (AP CS) exams developed by the

College Board. These changes began just as the exam was switched from Pascal to C++

in 1999. Java was too large a language to be taught completely, so a subset of the classes

and methods were identified as being an important part of teaching computer science.

This led to the development of a group of classes that were part of the AP CS program

and that mirrored the Java API exactly, e.g., instead of using java.lang, the AP CS

program identified and used ap.java.lang with a corresponding documentation as part of

the subset. At a similar time, Sun collaborated with the BlueJ group headed by Michael

Kolling to develop an IDE (Integrated Development Environment) for novice

programmers that was simple, but that used best practices that were part of Sun’s official

NetBeans IDE. The development of BlueJ led to a world wide adoption of BlueJ in many

colleges and high schools that continues today with the use of BlueJ and its derivative

GreenFoot which sees widespread adoption. In part as a result of that effort, I taught Java

to my students for many years, and continue to do so. This effort created a large base of

programmers who had learned the Java language and APIs, and would be reluctant to

retrain on other languages because of their investment in Java. It is my understanding

that Oracle, in its filings to the court, has claimed that the number of programmers who

have invested time and effort to learn Java is in the range of 6-7 million. The investment

of these programmers in learning the APIs is likely in the hundreds of millions of man

hours.

138. In part as a result of Sun’s substantial efforts to encourage programmers to learn and use

the Java language, a large number of software applications have been written in the Java

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page78 of 153

77
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

language. The investment involved in creating these existing applications creates further

industry demand for compatibility that would allow use of this existing software or code

fragments on new platforms.

139. In conclusion, it is my opinion that the Java APIs have the following qualities: First, the

APIs represent concepts and methods of operation. Second, the API names, method

declarations, and organization are dictated by function or mechanical rules and do not

reflect creative expression. Indeed, as noted, many API element names existed in the

public domain and were not original to Java. Third, the APIs at issue are necessary for

interoperability and efficiency reasons, and their use is driven by industry demand.

VI. THE ANDROID PLATFORM IS NOT VIRTUALLY IDENTICAL OR

SUBSTANTIALLY SIMILAR TO THE JAVA PLATFORM

140. The Android platform uses the unprotectable API elements at issue as part of a larger

overall framework that is substantially different from the Java platform, and more

appropriate for the mobile platform.

141. The Java API packages which have been implemented by Android are a small part of the

overall Android system, both in terms of the functionality they provide and the lines of

code involved. The 48 APIs at issue are roughly one-third of the Android Runtime Core

Libraries, which currently contains 168 API packages. The Core Libraries, in turn, are

themselves only a small part of the overall Android architecture — they are the small blue

box labeled “core libraries” in the yellow box at the right.3 Other elements include the

3 Diagram taken from the Android website, available at http://developer.android.com/images/system-

architecture.jpg.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page79 of 153

78
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Dalvik Virtual Machine, the Linux kernel, a web browser, and a variety of other libraries

and systems that are not part of the Java platform. These other components, when

combined with the Android Core Libraries, make for a complete mobile operating system

— something substantially different in scope and ability than the Java platform.

142. While the diagram above is not “to scale” (boxes of the same size may represent software

of different size and complexity), an analysis of the number of lines of source code in the

API packages at issue, in the Android Runtime Core Libraries, and in the other

components in the diagram suggests that, if anything, the diagram likely overrepresents

the size of the APIs at issue.

143. Using a Python script SlocCounter.py (attached as Exhibit E) based on the “sloccount”

tool, a commonly-used tool for measuring the size of the source code of large software

projects, Android’s implementation of the APIs at issue in the “Gingerbread” release

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page80 of 153

79
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

constitutes 259,474 lines of code, in 1022 files. This is roughly 1.6% of the size of the

entire Android source code, which comprises 57,076 files and 15,347,169 lines of code,4

and roughly 15% of the 6,340 files and 1,713,087 lines of code5 in the overall Android

(Gingerbread) Runtime Core Libraries. Similarly, implementation of these APIs is a

small portion of Oracle’s JDK 1.5 implementation of the entire Java API, constituting

315,570 lines of code out of 2,867,712 (11% of the total) and 1001 files out of 9521

(10.5%).

144. Because Android’s implementation of the APIs at issue comprises only 1.6% of the entire

Android source code, Android as a whole is not virtually identical or substantially similar

to the Java platform. The Java APIs at issue are not only a small portion of the Android

platform, in my opinion the use of the Java APIs in the Android context is substantially

different from the use of those APIs in the Java platform, which creates a different

platform with different capabilities and functionalities targeting the emerging smartphone

market rather than the desktop.

4 Numbers generated by running SlocCounterTotal.py (attached as Exhibit E) against a clean copy of

Android (obtained following the instructions available here: http://source.android.com/source/downloading.html)

and including only lines of code in .h, .c, .cpp, and .java files.

5 Numbers generated by running SlocCounterTotal.py against the libcore/ and frameworks/base/core/

directories in a clean copy of Android, counting only lines of code in .h, .c, .cpp, and .java files.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page81 of 153

80
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

VII. ANDROID’S DOCUMENTATION OF THE APIS AT ISSUE IS NOT

VIRTUALLY IDENTICAL OR SUBSTANTIALLY SIMILAR TO ORACLE’S

DOCUMENTATION

145. Every API has documentation. This documentation is a written description of the

functionalities provided by the API. The documentation is relied on by programmers

when they need more detail and context than what is available from the name and

organization of the method. Documentation also helps the programmer see what related

functionality is available in the same classes and packages. Like the naming and

organization of methods, good documentation of API components is extremely

constrained, because it must be factual and succinct. Just as a square root function should

not be named “Steve,” the documentation of the square root function, in order to be

maximally efficient for programmers who are referring to it, should be — and typically is

— factual and strictly descriptive of the underlying functionality.

146. Because of the practical requirement that documentation for an API strictly describe the

underlying functionality, and because programmers typically want to know the same

important pieces of information about a given API, there are not many ways to write

documentation for a specific API element. Two different authors documenting the same

API components would necessarily write very similar documentation because they are

describing the same functionality.

147. It may be useful to analogize writing documentation to writing a dictionary. If Merriam-

Webster defines a zebra as an “African mammal [] . . . related to the horse but

distinctively and conspicuously patterned in stripes of black or dark-brown” and

Dictionary.com defines a zebra as an “African mammal[] . . . each . . . having a

characteristic pattern of black or dark-brown stripes,” this does not mean that the second

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page82 of 153

81
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

dictionary copied from the first. The definitions are similar because they are describing

the same thing. It would be difficult to describe a zebra briefly without using words like

“Africa,” “stripes,” “black,” and “dark-brown.” In addition, even where there may be

multiple ways to describe things, the normal requirements that influence a dictionary

(e.g., clarity and brevity) are present for both dictionaries. This results in dictionary

definitions that are similar even when written without copying.

148. Similarly, writing software documentation is significantly constrained, because the writer

must convey the same factual information briefly, accurately, and with clarity. As a

result of these constraints, skilled technical writers writing about the same API are likely

to come up with descriptions that appear very similar and contain very similar

descriptions of the critical features. The documentation for Java follows this pattern. For

example, the method in the class java.io.PrintStream whose prototype is “void write(int

OneByte)” takes one byte and writes (hence the name) that byte to the relevant “stream.”

Not surprisingly, Android’s brief documentation of this method states that this method:

Writes one byte to the target stream.

Oracle’s brief documentation for the same method states:

Write the specified byte to this stream.

The two different documentation writers have chosen different verb tenses for “write,”

and described the byte to be written slightly differently (“one byte” versus “the specified

byte”) but the descriptions are generally similar, not because they were copied from each

other but because they must accurately and briefly describe the underlying functionality.

Most documentation of the same method by two different authors will show the same

pattern of similarity, because the authors are aiming at efficient, factual statements.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page83 of 153

82
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

149. In my opinion, the Android and Java documentations are not virtually identical, nor are

they substantially similar. Any similarity is dictated by the fact that they both document

the same functionalities, and does not imply or demonstrate that they both involve the

same creative expression. Indeed, the level of creativity reflected in the documentation is

very low because it is intended to be highly descriptive, and is generally circumscribed

by the nature of the functions described. It is my understanding that, in order to show

that the Android documentation for the APIs at issue infringes Oracle’s copyrights

purportedly covering Oracle’s documentation of the Java APIs, it must be shown that

original and creative elements of the Java documentation, if any, have been copied into

Android’s documentation.

VIII. THE TWELVE FILES OR PORTIONS OF FILES ALLEGED BY ORACLE TO

HAVE BEEN COPIED ARE QUALITATIVELY AND QUANTITATIVELY

INSIGNIFICANT AND THEY ADD NO OR VERY LITTLE VALUE TO

ANDROID

150. In this section, I will analyze the 12 files that Oracle alleges were copied by Google.

These files represent, by number of files, 0.02% of Android and 0.13% of Oracle’s

implementation of Java 1.5 (12 files out of 57,076 in Android and 9,521 in Oracle’s

implementation of Java 1.5), and a similar percentage when measured by lines of code

(742 lines out of 15 million and 2.8 million lines of code for Android and Oracle Java

1.5, respectively.) It is my understanding that, aside from these 12 files, Oracle does not

allege that Google literally copied source code from Oracle.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page84 of 153

83
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

A. TIMSORT FILES

151. It is my understanding that two Android files, TimSort.java and

ComparableTimSort.java, are at issue. These files are a tiny fraction of a percent of

Android and appear to have been donated by Google to Oracle, as explained below.

152. I have inspected three files: TimSort.java, ComparableTimSort.java, and Oracle’s

implementation of the Array class contained in Arrays.java. Only a single method out of

the 11 methods in TimSort.java and 13 methods in ComparableTimSort.java is shared

between those two files and Arrays.java. This method is called rangeCheck, and I have

reproduced this method below:

Line
#

Code

1 private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {

2 if (fromIndex > toIndex)

3 throw new IllegalArgumentException("fromIndex(" + fromIndex +

4 ") > toIndex(" + toIndex+")");

5 if (fromIndex < 0)

6 throw new ArrayIndexOutOfBoundsException(fromIndex);

7 if (toIndex > arrayLen)

8 throw new ArrayIndexOutOfBoundsException(toIndex);

9 }

Quantitatively, this method is 9 lines of code out of 3,179 lines in the Oracle JDK 1.5

version of Arrays.java, 9 lines out of 924 lines in the latest Android version of

TimSort.java, and 9 lines out of the total 46,269 lines (0.5%) that compose Android’s

implementation of the single java.util package at issue.

153. Qualitatively, the rangeCheck method is also trivial. It merely performs a simple,

utilitarian, and fairly mundane “sanity check,” checking that certain arguments used

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page85 of 153

84
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

elsewhere are correct before they are used. The two arguments tested are the index to the

first element of interest in an array (“fromIndex”), and the index to the last element of

interest in the array (“toIndex”). They are compared against the number of elements in

the given array (“arrayLen”), against zero, and against each other to ensure that their

values are “in range” — that is to say that they are acceptable in the context of this code.

154. Because the first element should always come before the last element, if fromIndex is

larger than toIndex — line #2 in the code, “if (fromIndex > toIndex)” — that means that

the programmer made an error. If that happens, lines 3 and 4 of the method “throw an

exception” (in programming jargon, they indicate that an error has occurred).

155. Similarly, because an index should, by convention, never be less than zero, if fromIndex

is less than zero, this indicates another type of error. Line 5 tests for this (“if (fromIndex

< 0)”), and if the test fails, line 6 signals the error by throwing another exception.

156. Finally, the last element of interest (“toIndex”) must refer to an element that actually

exists, so if toIndex is greater than the total number of elements in the array (“arrayLen”)

(line 7), that also indicates an error, and the another exception is thrown by line 8.

157. This code was also necessary for API compatibility with other sort implementations in

Java. Because the “exceptions” thrown when an error occurs can be considered to be part

of the API of a method, using code extremely similar to this was necessary for TimSort to

be completely compatible with other sort implementations. If code extremely similar to

this, throwing the same exceptions under the same circumstances, had not been used, the

TimSort files could not have been accepted by Oracle into Java for use with Java 7.

158. It is my opinion that this single function is both qualitatively and quantitatively an

extremely small portion of the functionality of the TimSort.java and

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page86 of 153

85
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ComparableTimSort.java files, which are in turn an extremely small portion of the overall

functionality of Java.

159. I have also reviewed the publicly available documents discussing the history of these two

files. It appears that they were written by Google employee Joshua Bloch. While the

files were first included in Android, it also appears that Google offered the files to Oracle

(see

http://markmail.org/thread/xwyxemce75vvz33h#query:+page:1+mid:vnipd7bqzs5vxfjw+

state:results), and that this donation was accepted by Oracle (see

http://blogs.sun.com/mr/entry/jdk7_m5). As a result of this donation, these files are now

part of the most recent version of Oracle’s implementation of Java.

B. SECURITY TEST FILES

160. It is my understanding that eight files in the directories

"/support/src/test/java/org/apache/harmony/security/tests/support/acl/" and

"/support/src/test/java/org/apache/harmony/security/tests/support/cert/" are at issue.

These files are all what are known as “test files,” and as explained below they add

minimal if any material value to, and are a very small portion of, Android. Specifically,

the files at issue are:

AclEntryImpl.java

AclImpl.java

GroupImpl.java

OwnerImpl.java

PermissionImpl.java

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page87 of 153

86
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PrincipalImpl.java

AclEnumerator.java

PolicyNodeImpl.java

161. It is good engineering practice to write companion software that tests the functionality of

the parts of the software that will be delivered to customers. This software (referred to as

“test software”) will do the software equivalent of factory testing, feeding the software

test inputs (such as “2 + 2”) and verifying that the correct output is returned (such as “4”).

Individual tests are known as “unit tests,” because they test a specific “unit” of the

software, and the files that are used to implement these unit tests are often referred to as

test files. Doing this testing in software, rather than manually, allows for the testing to be

done quickly and reliably. The testing can be done, for example, after every single

change to the software, rather than only every day or every week as might be required

with manual testing.

162. These particular files are in directories labeled “test,” and the structure of their source

code indicates that they are part of a test package, instead of a package which is part of

the publicly-available Android API. In addition, several of the files contain comments

indicating that they are for “verification” of a specific interface. Verification of an

interface is a common part of software testing. Finally, these files are referenced only in

trunk/dalvik/libcore/security/src/test/java/tests/security/acl/IAclTest.java and other files

in the same directory. This file, and others like it, appears to be the so-called “test

framework” — the software that runs the tests. This code is clearly structured to call

these files as tests, and not to use the files as part of the actual functionality of the

Android platform. In addition, it is worth noting that Android’s history shows that these

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page88 of 153

87
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

were removed from Android in January of 2011 and have not, as of this writing, been

replaced.6 This confirms that the files were immaterial.

163. These files are also in large part “dummy” files — instead of having complex logic, they

return certain, fixed values, which is a common practice in test files. For example, one

method in AclEntryImpl.java consists entirely of the following code:

public boolean isNegative() {
return negative;

}

164. In a real (not test) file, the “isNegative” method would do some complex logic to

understand whether the quality was negative. Here, because this is a “dummy” file used

for test purposes, no logic or work is done — instead, it simply immediately returns

“negative.” This “dummy” result would not do much good for real code, but in a test

environment, this predictability is useful — if a test shows that for some reason this

function is returning “positive,” then something is wrong and must be fixed. Dummy

files in general, and these files in particular, are not particularly creative — given the

functional constraint of the method names that they are testing, there is typically only one

efficient, reasonable way to write them.

165. In general, test files are written for internal use by developers prior to a product’s release.

They are typically not distributed as part of consumer products, for two reasons. First,

6 See changes at

http://android.git.kernel.org/?p=platform/libcore.git;a=commitdiff;h=6241c067e065065098eb50a7aef35a5

8f78447a6 and

http://android.git.kernel.org/?p=platform/libcore.git;a=commitdiff;h=95d52b3b1446af2fefd46f57efc1afb6c

679e8cc

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page89 of 153

88
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the testing is finished when the software is finalized since end users of consumer products

cannot fix any problems found by the testing. Test files are simply not material to the

customer experience. Second, distributing them takes up additional space and resources

that could be used for other purposes that actually provide direct functionality to

consumers, so test files can negatively impact the customer experience if distributed. As

a result of these factors, test files generally are not used by or distributed to consumers.

In my opinion, these test files are likely to be the same as others — not distributed to

consumers and not material to the consumer experience.

166. Quantitatively, these eight files represent an extremely small part of Android’s and

Oracle’s implementations of the Java APIs at issue. These codebases are roughly 1.7

million lines of code and 2.8 million lines of code, respectively, and so these eight files

represent less than 0.1% of the lines of code. They are not even a substantial portion of

the overall number of test files. My analysis of Android 2.3 suggests that there are at

least 142 test files comprising 48,376 lines of code. These eight accused test files are less

than 5% of this, measured in terms of lines of code.

167. Qualitatively, these eight files have no material effect on how Android implements the

Java APIs at issue, because they are not used by or distributed to consumers.

168. In my opinion, these test files are qualitatively and quantitatively insignificant to the

overall Android system.

C. COMMENTS IN CODESOURCETEST.JAVA AND

COLLECTIONCERTSTOREPARAMETERSTEST.JAVA

169. It is my understanding that the files CodeSourceTest.java and

CollectionCertStoreParametersTest.java are at issue. The comments in these files that are

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page90 of 153

89
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

at issue were not written by Google, add no value to Android, and are a very small

portion of Android.

170. I have inspected these four files (two each from Oracle’s implementation and Android’s

implementation), and the only things that appear to be the same between these classes are

certain comments. Of the 36 comments in Android’s CodeSourceTest.java at the time of

the complaint, eight appear to be the same as comments in Oracle’s implementation of

the CodeSource class. Of the 16 comments in Android’s

CollectionCertStoreParametersTest.java, 12 appear to be the same as comments in

Oracle’s implementation of the CollectionCertStore Parameters class. No source code

appears to have been copied, and the comments at issue appear to have been removed

from Android.7

171. Comments are used in software source code because they help programmers understand

the code that they are reading and potentially modifying. However, comments do not

become part of the final product that is shipped to the user of the software. If all

comments were removed, the functionality would be identical, and users would be

generally unaffected. These comments, like all comments generally, would not have

been distributed as part of any Android-based products; they would have only been

available to any programmers who downloaded the source code from the Android

website. It is my opinion, therefore, that these comments did not add material value to

the Android platform.

7 The removal is documented here:

http://android.git.kernel.org/?p=platform/libcore.git;a=commitdiff;h=a49d9caee4cd74c0d2cf83d79b8ecdc00453dff8

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page91 of 153

90
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

172. In addition, these comments are largely very descriptive and functional. For example,

one of the copied comments appears to be from the following source code:

/**
* Returns a formatted string describing the parameters.
*
* @return a formatted string describing the parameters
*/

public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("CollectionCertStoreParameters: [\n");
sb.append(" collection: " + coll + "\n");
sb.append("]");
return sb.toString();

}

173. The similar portion of the comment is “Returns a formatted string describing the

parameters.” This is a simple, declarative statement, which describes the source code

below it. Like other documentation discussed in paragraph 145, there are very few ways

to state this, because it is a simple, factual description of the operation of the public

method below it. The other comments at issue, with one exception, are very similar — a

single sentence factually describing the method in question. The one exception, slightly

longer and more detailed, is still only three sentences long.

174. I have investigated the history of these files, and have determined that these comments

were not created by Google. It appears that they were written by Intel employees who

donated the files containing the comments to an open source project called Apache

Harmony. My understanding is that Apache Harmony is an independent implementation

of the Java APIs, created by a non-profit foundation called the Apache Foundation. My

understanding is that Apache Harmony is licensed to the public under the terms of the

Apache License, which allow anyone to reuse the code with essentially no restrictions. It

is my understanding that, in compliance with the terms of the Apache License, Android

reused the Apache Harmony implementation of some parts of the Java APIs, and my

inspection of files in Android confirms this understanding. Android’s versions of these

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page92 of 153

91
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

two files are virtually identical to Apache Harmony’s versions of the same files, strongly

suggesting that these two files (CollectionCertStoreParametersTest.java and

CodeSourceTest.java) were obtained by Google for Android under license from the

Apache Foundation.

175. The Apache Foundation makes its software records available to the public, documenting

the history of all files distributed by the Apache Foundation, including

CollectionCertStoreParametersTest.java and CodeSourceTest.java. By using these

records, it is possible to see when a particular file was created, when individual lines of

code were written or modified, and by whom. Using these records, I determined that

these comments have been present in these files since before the Android project. For

example, the Android file “CollectionCertStoreParametersTest.java” contained the

comment fragment “the default parameter values (an empty and immutable.” This same

comment fragment is also present in the Harmony file

“CollectionCertStoreParametersTest.java.” Finally, this same fragment is present in the

Oracle file “CollectionCertStoreParameter.java.” By using the history features of the

Apache Foundation’s source code storage tool, I verified that this same fragment and

matching surrounding text were present in that Harmony file when the file was initially

created by an Intel employee, Geir Magnusson, on Jan. 8, 2006.8 After the file was added

to Android, Google did not change the comment; the comment stayed the same from the

8 See file history available at http://svn.apache.org/viewvc/incubator/harmony/enhanced/classlib/trunk/java-

src/security2/test/common/unit/java/security/cert/CollectionCertStoreParametersTest.java?limit_changes=0&view=

markup&pathrev=367016.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page93 of 153

92
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

time that the file was licensed from Harmony until they were removed.9 The same is true

of the other comments in these two files, all of which appear to have originated with

Intel’s contribution to Apache on Jan. 8, 2006. As a result, while I believe that these files

had some identical comments (before they were removed by Google), it appears that this

is related to choices made by Intel and not by Google.

176. It is also important to note that these two files represent an extremely small part of

Android’s and Oracle’s implementations of the Java APIs. These codebases are roughly

1.7 million lines of code and 2.8 million lines of code, respectively, and so these two files

represent less than 0.1% of lines of code.

177. In addition, these files are also test files, similar to the files discussed in the previous

section. In my opinion, these files are qualitatively and quantitatively insignificant to the

overall Android platform.

//

//

//

9 See file history at

http://android.git.kernel.org/?p=platform/libcore.git;a=history;f=luni/src/test/java/org/apache/harmony/security/tests/

java/security/CodeSourceTest.java;hb=a49d9caee4cd74c0d2cf83d79b8ecdc00453dff8

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page94 of 153

93
OWEN ASTRACHAN OPENING REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

178. I reserve the right to update and refine my opinions and analyses in light of any additional

materials or information that may come to my attention in the future, including additional

contentions by Oracle as well as any rulings issued by the Court in this case. I also

reserve the right to supplement my opinions and analyses as set forth in this report in

light of any expert reports submitted by Oracle and in light of any deposition or trial

testimony of Oracle’s experts.

DATED: July 29, 2011

Owen Astrachan, Ph.D.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page95 of 153

ola
Pencil

1
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

EXHIBIT A: OWEN ASTRACHAN CV

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page96 of 153

Owen L. Astrachan

Department of Computer Science
Box 90129

Duke University
Durham, NC 27708-0129
telephone: (919) 660-6522
email: ola@cs.duke.edu

July 29, 2011

I. Education
Ph.D. Computer Science Duke University 1992
M.S. Computer Science Duke University 1989
M.A.T. Mathematics Duke University 1979
A.B. Mathematics Dartmouth College 1978

with distinction in Mathematics, Summa Cum Laude, Phi Beta Kappa

II. Professional Appointments

Duke University, Department of Computer Science

Professor of the Practice
July 2000 —.

Associate Professor of the Practice
July 1996 — July 2000.

Director of Undergraduate Studies
September 1993 — .

Assistant Professor of the Practice of Computer Science

1993 — 1996.

Lecturer in Computer Science

1991–1992. Developed and taught the introductory course for non-majors. Served on lab com-
mittee determining priorities for physical improvements.

Research Assistant

1991 (June–Aug). Research Assistant at SRI International, AI group, working for Mark Stickel
on the design of intelligent and efficient automated reasoning systems.

Research Assistant

1988–1991. Research Assistant for Donald W. Loveland, investigating automated theorem prov-
ing. Designed and implemented an OR parallel theorem prover that runs on a BBN Butterfly
GP-1000, TC2000 and on a network of Sun workstations.

Senior Graduate Instructor

1986–1988. Solely responsible for developing the curriculum and teaching the first course for
majors in the Computer Science Department. Assisted with course in Operating Systems.

Teaching Assistant

1985-1986 Served as Teaching Assistant for the the first two courses for majors in Computer
Science. Responsible for designing laboratory exercises and running recitation sections.

University of British Columbia, Computer Science Department

Visiting Scholar and Lecturer
Sept 1998 — June 1999 (on sabbatical from Duke)

Experience in Secondary Education

1

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page97 of 153

Math and Computer Science Teacher Durham Academy
1980–1985. Taught Advanced Placement Calculus, Advanced Placement Computer Science,
Multivariable Calculus and Linear Algebra, Geometry, Introduction to Computer Program-
ming, Finite Mathematics. Developed curriculum for Finite Math, AP Computer Science, and
Multivariable Calculus.

Math Teacher Camp Lejeune HS, Camp Lejeune, NC
1978–1980. Taught honors Trigonometry, honors Geometry, Algebra I, Pre-Algebra.

III. Honors

2007, NSF, CISE Distinguished Education Fellow, Interdisciplinary Problem- and Case-based Computer
Science, one of two inaugural CDEF awardees (see grants).

2004, IBM Faculty Award, Issues in Large-scale Software Componentization

2003, ACM International Collegiate Programming Contest (ICPC) Coaches Award.

2002, Richard K. Lublin Award for Distinguished and Motivating Teaching

2002, Nominated for Alumni Distinguished Teaching Award

2001, Nominated for Alumni Distinguished Teaching Award

1998, Outstanding instructor of Computer Science, University of British Columbia (teaching on sab-
batical)

1997, NSF Career Award

1996, Nominated for Alumni Distinguished Teaching Award

1995, Duke University, Trinity College of Arts and Science: Robert B. Cox Distinguished Teaching in
Science Award

1995, Sigma Xi

1994, Nominated for Alumni Distinguished Teaching Award

1978, A.B. degree awarded with distinction, summa cum laude, Phi Beta Kappa

IV. Publications

Journals:

Owen Astrachan and Robert Dewar. CS Education in the U.S.: Heading in the Wrong Direction.
Communications of the ACM. July 2009, v. 52, n. 7, pp. 41-45.

O.L. Astrachan and D.W. Loveland. The Use of Lemmas in the Model Elimination Procedure. Journal
of Automated Reasoning, v. 19 n.1, August, 1997, pp. 117-141.

Owen Astrachan, Kim Bruce, Robert Cupper, Peter Denning, Scot Drysdale, Tom Horton, Charles
Kelemen, Cathy McGeoch, Yale Patt, Viera Proulx, Roy Rada, Richard Rasala, Eric Roberts,
Steven Rudich, Lynn Stein, Allen Tucker, Charles van Loan. Strategic Directions in Computer
Science Education. ACM Computing Surveys. v 28, n 4, December 1996.

O.L. Astrachan. METEOR: Exploring Model Elimination Theorem Proving. Journal of Automated
Reasoning. v.13 n.2, 1994, pp. 283-296.

Books:

Owen Astrachan. A Computer Science Tapestry: Exploring Programming and Computer Science with
C++, Second edition. McGraw-Hill, 2000.

Owen Astrachan. A Computer Science Tapestry: Exploring Programming and Computer Science with
C++. McGraw-Hill, 1997.

Owen Astrachan. The Large Integer Case Study in C++. The College Board, Advanced Placement
Program, 1997.

2

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page98 of 153

Book Chapters:

Owen Astrachan and Robert Duvall and Eugene Wallingford. Bringing Extreme Programming to the
Classroom. in Extreme Programming Perspectives, Giancarlo Succi (ed.), Addison Wesley, 2002.

O.L. Astrachan and D.W. Loveland. METEORs: High Performance Theorem Provers Using Model
Elimination. in Automated Reasoning: Essays in Honor of Woody Bledsoe ed. R.S. Boyer,
Kluwer Academic Press 1991.

Miscellaneous:

O.L. Astrachan and Susan Horwitz and the Advanced Placement Computer Science Development
Committee. Communications of the ACM. Technical Opinion: The First Course Conundrum.
June, 1995. Pages 117-118.

Refereed Conferences:

Owen Astrachan. Pander to Ponder, SIGCSE Technical Symposium on Computer Science Education,
Chattanooga, TN, 2009

Casey Alt, Owen Astrachan, Jeffrey Forbes, Richard Lucic, and Susan Rodger. Social Networks
Generate Interest in Computer Science. SIGCSE Technical Symposium on Computer Science
Education, Houston, TX, 2006.

Owen Astrachan. Non-Competitive Programming Contest Problems as the Basis for Just-in-time
Teaching. Proceedings of Frontiers in Education, October 2004.

Owen Astrachan. Bubble Sort: An Archaeological Algorithmic Analysis. SIGCSE Technical Sympo-
sium on Computer Science Education, Reno, NV, 2003.

Owen Astrachan and David Bernstein and Andrew English and Benjamin Koh. Development Issues
for a Networked, Object Oriented Gaming Architecture (NOOGA) Teaching Tool. Proceedings
of Frontiers in Education, November 2002.

Owen Astrachan and Robert Duvall and Jeffrey Forbes and Susan Rodger. Active Learning in Small
to Large Courses Proceedings of Frontiers in Education, November 2002.

Owen Astrachan and Robert Duvall and Eugene Wallingford. Bringing Extreme Programming to the
Classroom, Proceedings of XPUniverse, Raleigh, NC, July, 2001.

Owen Astrachan. OO Overkill: When Simple is Better than Not, SIGCSE Technical Symposium on
Computer Science Education. Charlotte, NC, February 2001.

Charles Keleman, Allen Tucker, Peter Henderson, Kim Bruce, Owen Astrachan. Has Our Curriculum
Become Math-Phobic?, SIGCSE Conference on Integrating Technology into Computer Science
Education (ITiCSE), June 2000.

Owen Astrachan and Eugene Wallingford. Loop Patterns. Pattern Languages of Programming (PLoP),
Allerton Park, IL, August, 1998.

Owen Astrachan. Hooks and Props as Instructional Technology. SIGCSE Conference on Integrating
Technology into Computer Science Education (ITiCSE), August 1998.

Owen Astrachan, Geoffrey Berry, Landon Cox and Garrett Mitchener. Design Patterns: An Essential
Component of CS Curricula. SIGCSE Technical Symposium on Computer Science Education.
Atlanta, GA, February 1998.

Owen Astrachan and Susan Rodger. Animation, Visualization, and Interaction in CS 1 Assignments,
SIGCSE Technical Symposium on Computer Science Education. Atlanta, GA, February 1998.

Owen Astrachan and Robert Smith and James Wilkes. Application-based Modules using Apprentice
Learning for CS 2. SIGCSE Technical Symposium on Computer Science Education. San Jose,
CA, February 1997, pp 233–237.

3

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page99 of 153

Owen Astrachan and Trevor Selby and Joshua Unger. An Object-Oriented, Apprenticeship Approach
to Data Structures using Simulation. Frontiers in Education, Salt Lake City, Utah, 1996, pp
130–134.

Owen Astrachan and David Reed. AAA and CS1 : The Applied Apprenticeship Approach to CS 1.
SIGCSE Technical Symposium on Computer Science Education. Nashville, TN, March 1995.

Owen Astrachan and Claire Bono. Using simulation in an objects-early approach to CS1 and CS2.
OOPSLA Conference Proceedings, Educator’s Forum. Portland, Oregon, October 1994.

O. L. Astrachan and D.W. Loveland. METEOR: Model Elimination Theorem Proving with Lemmas
(system abstract). Twelfth Conference on Automated Deduction (CADE-12). Nancy, France,
1994.

Owen Astrachan. Self reference is a Thematic Essential. SIGCSE Technical Symposium on Computer
Science Education. Phoenix, Arizona, March 1994.

Owen Astrachan. METEOR: Exploring Model Elimination Theorem Proving. Workshop on Theorem
Proving with Analytic Tableaux and Related Methods. Marseilles, France, April 1993.

Owen L. Astrachan, Vivek Khera, and David Kotz. The Duke Internet Programming Contest: A
Report and Philosophy. SIGCSE Technical Symposium on Computer Science Education. Indi-
anapolis, IN, February 1993.

Owen L. Astrachan and Mark E. Stickel. Caching and Lemmaizing in Model Elimination Theorem
Provers. Eleventh Conference on Automated Deduction (CADE-11). Saratoga Springs, NY,
June 1992.

Owen Astrachan. Finding a Stable roommate, job or spouse: a case study crossing the boundaries
of Computer Science Courses. SIGCSE Technical Symposium on Computer Science Education.
Kansas City, MO, March 1992.

Owen Astrachan. Pictures as Invariants. SIGCSE Technical Symposium on Computer Science Educa-
tion. San Antonio, TX, March 1991.

Owen Astrachan. METEOR: Model Elimination Theorem Prover for Efficient OR-Parallelism. AAAI
Spring Symposium on Representation and Compilation in High Performance Theorem Proving:
Titles and Abstracts, ed. W.W. Bledsoe, M. Stickel, P. Lincoln, R. Overbeek, and D. Plaisted,
Stanford, CA, March 1989.

Unrefereed Reports:

Owen L. Astrachan and Donald W. Loveland The Use of Lemmas in the Model Elimination Procedure.
Duke University Technical Report CS-1993-25.

Owen L. Astrachan. METEOR: Exploring Model Elimination Theorem Proving. Duke University
Technical Report CS-1992-22.

Owen L. Astrachan. Investigations in Model Elimination Based Theorem Proving. Ph.D. Thesis. Also
Duke University Technical Report CS-1992-21.

Owen L. Astrachan and Mark E. Stickel. Caching and Lemmaizing in Model Elimination Theorem
Provers. SRI International Technical Note 513, December 1991.

4

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page100 of 153

V. Service

Professional Service

2009 – College Board HEAC: Higher Education Advisory Committee for Advanced Placement. Provide
oversight and advice regarding the program.

2009, July, NSF Review Panel: Broadening Participation in Computing (BPC)

2009 NITRD: Networking and Information Technology Research and Development Program, panelist
at public forum for discussion of the 2009 Federal Strategic Plan

2008 – NSF/College Board joint group on the First Year in Computer Science (chair).

2008, May, NSF Review Panel CPATH

2007 – College Board AP Computer Science Redesign Commission Committee charged with examining
and redefining the Advanced Placement Computer Science Program.

2006– ACM Ed-Council. One of 25 members providing leadership and governance to the ACM about
educational activities and outreach.

2005, July, NSF Review Panel Advanced Learning Technology

Program Committee OOPSLA 2005, Educator’s Symposium

Program Committee OOPSLA 2004, Educator’s Symposium

Internet & Society Idea Exchange Faculty Steering Committee for courses related to Internet and
Society (oversight from Harvard and MIT, including 55 faculty from around the world).

NSF Review Panel CRCD Program
2004, reviewed proposals for the CRCD program in Computer Science at NSF.

ACM/College Board Digital Library Project 2004 – Advisory Committee to develop a project sup-
porting Compute Science in high schools as part of the national NSF-sponsored digital library
program.

ACM/College Board JETT Steering Committee 2002 – , Member of four-person steering committee
providing oversight for joint ACM/College Board committee reviewing and approving national
sites to host high school outreach programs for computer science.

Illinois Math and Science Academy
2002 – 2003, Member of three-person external review board for Mathematics/Computer Science
at IMSA.

College Board/High School Computer Science AP Computer Science
2001 – 2002, Member of College Board ad hoc professional development committee to develop
standards for training/educating high school teachers and workshop consultants in computer
science.

NSF Review Panel CISE Program
2000, reviewed proposals for the CRCD program in Computer Science at NSF.

Math and Computer Science Mathematical Association of America
1999. Committee made recommendations to the MAA on the role of mathematics in computer
science. Committee consisted of Alan Tucker, Charles Keleman, Dale Skrien, Charles van Loan,
Peter Henderson, Kim Bruce, Owen Astrachan.

Chair, Advisory Committee for AP Computer Science College Board
1999–2000. Committee making recommendations on the use of new languages and curricula
in Advanced Placement Computer Science. Committe consists of David Gries, Robert (Corky)
Cartwright, Henry Walker, Ursula Wolz, Cay Horstmann, Fran Trees, Rich Kick.

External Oversight Board North Carolina Central University
1997 – 1998, oversee the growth and accreditation of the Computer Science Department.

NSF Review Panel CISE Program
1997, reviewed proposals to the Education Innovation program in the CISE directorate of NSF.

5

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page101 of 153

External Review Committee Oberlin College
1996, Member of external review committee to evaluate computer science department at Oberlin.

Program Committee CADE-13
1995/6, Member of program committee for CADE-13, Conference on Automated Deduction.

Chair, Advisory Committee for AP Computer Science College Board
1995–1996. Committee makes recommendations on the best use of C++ on the Advanced
Placement Exam. The Committee is convened by the College Board, with representation from
SIGCSE, the Computer Science Education special interest group of the ACM.

Judge, ACM International Programming Contest Association for Computing Machinery
1994–1997. One of six people responsible for developing problems and judging solutions for the
ACM Programming Contest finals.

Chief Reader, Advanced Placement Computer Science Educational Testing Service
1989–1994. Responsible for developing grading standards and assigning scores for the AP exam
in Computer Science. Assist with the development of the exam. Oversee, hire, and manage 70
University faculty consultants and High School educators in the grading of 10,000 AP exams
taken by secondary students throughout the world.

Member, AP Computer Science Development Committee The College Board
1985–1989. Responsible for developing curriculum and devising tests for the AP exam in Com-
puter Science.

Director, Duke Internet Programming Contest
1990 — 1994 . Co-founded a computer programming contest held in real-time over the Internet,
involving 60 teams from 37 institutions in 5 countries (1990); 240 teams from 100 institutions
in 9 countries (1991); 290 teams from 140 institutions in 14 countries (1992), 495 teams from
200 institutions in 20 countries (1993). Developed the problems used in the contest, designed
solutions for the problems, and co-directed the administration of the contest.

IEEE Programming Contest
1994–1995. Coach of the Duke undergraduate IEEE Programming team. This competition is by
invitation only to sixteen teams throughout the world. In 1994 Duke participated for the first
time. In 1995 Duke won the contest.

ACM Programming Contest
1993–. Coach of Duke undergraduate ACM Programming Team. In 1994 the team won the mid-
Atlantic regional contest and placed third in the world (first U.S. team) in the world finals. In
1995 the team won the mid-Atlantic regional contest and advanced to the world finals, finishing
22nd. In 1997 the team advanced to the world finals. In 1998 the team advanced to the world
finals. (On sabbatical in 1999-2000.) In 2001, the team advanced to the world finals. In 2002
Duke had four teams in the top fifteen, and the top two in the Midatlantic regional contest; the
top team advances to the world finals. In 2003 Duke advanced to the world finals. In 2004 Duke
won the region (tied for first), advanced to the world finals and had three teams in the top 15
of the region; in the world finals Duke was one of four US teams that placed (above honorable
mention) and was tied with Caltech and MIT for second among US teams. In 2005 Duke won
the Region and advanced to the world finals receiving an honorable mention. In 2006 a Duke
team advanced to the world finals, in 2007 Duke won the region and participated in the world
finals, in 2008 Duke received an at-large bid to the world finals (to be held in 2009).

1989–1990. Member of Duke Programming team, 1989 and 1990 ACM International Program-
ming Contests. Finished fourth in 1989 (Louisville, KY) and eighth in 1990 (Washington, DC)
contest (world) finals.

Referee Activities

6

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page102 of 153

2010 SIGCSE Technical Symposium on Computer Science Education
2009 SIGCSE Technical Symposium on Computer Science Education
2008 SIGCSE Technical Symposium on Computer Science Education
2007 SIGCSE Technical Symposium on Computer Science Education
2006 SIGCSE Technical Symposium on Computer Science Education
2005 ITiCSE SIGCSE Conference on Integrating Technology into Computer Science Education (ITiCSE)
2005 SIGCSE Technical Symposium on Computer Science Education
2004 ITiCSE SIGCSE Conference on Integrating Technology into Computer Science Education (ITiCSE)
2004 SIGCSE Technical Symposium on Computer Science Education
2003 SIGCSE Technical Symposium on Computer Science Education
2001 SIGCSE Technical Symposium on Computer Science Education
2000 SIGCSE Technical Symposium on Computer Science Education
1996 SIGCSE Technical Symposium on Computer Science Education
1995/6 CADE-13 Conference on Automated Deduction
1995 TABLEAUX ’95 Workshop on Theorem Proving with

Analytic Tableaux and Related Methods
IJCAI International Joint Symposium on Artifical Intelligence

Automated Reasoning Track
SIGCSE Technical Symposium on Computer Science Education

1994 SIGCSE Technical Symposium on Computer Science Education
1993 ILPS International Logic Programming Symposium

IJCAI Automated Reasoning track
ISMIS International Symposium on Methodologies

for Intelligent Systems
SIGCSE Technical Symposium on Computer Science Education

1992 CADE-11 Conference on Automated Deduction
SIGCSE Technical Symposium on Computer Science Education

1991 SIGCSE Technical Symposium on Computer Science Education
1990 CADE-10 Tenth Conference on Automated Deduction

Duke Service

2009. Chair promotion committee for Jeffrey Forbes.

2008. Member of Office Education Committee (OEC) overseeing appointments of ROTC faculty.

2007-2009. Member of Academic Council.

2007-2010. University Committee on Admissions and Financial Aid (Academic Council).

2007–2009 Member of QEP (quality enhancement plan) University Committee to create a 75-page
documentn outlining Duke’s future as part of our 10-year SACS re-accreditation process.

2008 Search Committee, Dean to replace Robert Thompson, resulted in appointment of Lee Baker.

2007. Chair promotion committee for Susan Rodger.

2007-2009. University Commencement Committee.

2006-2007. Chair ad hoc Committee to Distingish Trinity College Degrees. Will report on the status
of the BA and BS degrees at Duke.

2006–. Member of Faculty Research Committee that decides on Trinity College competitive grants and
awards to faculty for research and conference activity.

2005. Member of Commitee on Departmental Support for Technology as part of the University com-
mitteess on Strategic Directions.

2005. Member of Arts and Science search commitee for the A&SIST Associate Dean.

2004-2005. Chair re-appointment committee for Prof. Richard Lucic

2004-. ISIS (Information Sciences and Information Studies) Faculty Steering Committee.

2004-. One of three faculty overseeing the development of teaching and learning, in conjunction with the
CIT, as part of re-allocation of resources regarding the former center for teaching and learning.

7

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page103 of 153

2004-2007. Member Executive Committee of the Arts and Science Council (ECASC).
2004-2007. Member of ITAC, Committee on Information Technology at Duke.
Chair re-appointment committee for Prof. Richard Lucic 2002.
Member re-appointment committee for Prof. Jeffrey Forbes 2002.
Member Advisory Board for BlackBoard at Duke, 2002–
CITIE, IT skills committee, 2002.
Member Academic Integrity Council, 2001–
Member Executive Committee of the Arts and Science Council (ECASC) 2000–2003.
Interviewed candidates for A.B. Duke program, 2000, 2001
Member Board of Directors for Center for Instructional Technology (CIT), 1999–.
Arts and Science Council, 1999–2008.
Chair, Arts and Science Committee on Integrated Cluster Classrooms, 1999–2000.
Chair re-appointment/promotion committee for Prof. Robert Duvall, 2000.
Chair, University Planning Group on Instructional Technology, 1999–2000.
Search Committee, head of Career Development Center, 1998.
Member B.N. Duke Scholarship Committee, 1997
Member Core Team on evaluating use of Instructional and Information Technology, 1997.
ITAC Committee on Student Computing, 1996.
Chair search committee for Lecturer position in Computer Science, 1996.
Chair re-appointment/promotion committee for Prof. Susan Rodger, 1996.
Search Committee, Assistent Dean of Student Development, 1996.
Arts and Science Council, 1995–1996.
Member of Management Team (Center for Teaching and Learning) to develop an Exercise in Interactive

Theatre for “Developing Teacher Knowledge”, 1996.
Director of Undergraduate Studies, 1993–.
Provost’s ad-hoc committee for Computer Technology and Education, 1995–1997.
Member of Steering Committee, Schulzbeger Interactive Learning Laboratory, Teaching and Learning

Center, 1994–1996.
Faculty Advisor, DULUG: Duke University Linux User’s Group, 1995–.
Departmental major advisor 1992– (supervise 20 first majors, 19 second majors per yaer.)
Premajor advisor at Duke University, 1986– 1998(ten first year students each year, total of 20 per year)
Chaired search committee for Assistant Professor of-the-practice, 1994.
Committee on the role of teaching for graduate students 1990–1992

VI. Consultancies

Expert Witness, Alston and Bird

2010 — Retained by Nokia in “Certain Mobile Communications and Computer Devices and
Components Thereof,” ITC Inv. No. 337-TA-704 (complaint filed Jan. 15, 2010), before the US
International Trade Commission. Worked on Markman report, expert report, deposition and
testimony.

Expert Witness, Alston and Bird

2008/2009 — Retained by Plaintiffs in Move, Inc., Nat’l Assoc. of Realtors, and Nat’l Assoc.
of Home Builders vs. Real Estate Alliance Ltd et al., 2:07-CV-02185-GHK-AJW (filed Apr. 3,
2007) in the Central District of California. Worked on claim construction and expert report
preparation.

8

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page104 of 153

Consultant, College Board
2008 – Oversee and help plan colloquium for college faculty (attended by 70 faculty) to under-
stand current and future directions for AP Computer Science.

Google
2006 (six months) – Worked as an external contractor to help develop material used internally
at Google for educating Google software engineers about Java and C++ programming.

Expert Witness, Womble, Carlyle, Sandridge and Rice
Software expert regarding work related to a contract dispute.

Consultant, AP Computer Science Educational Testing Service
1994 –. Advise development committee on incorporating C++ and Java into the Advanced
Placement Program. Wrote Pascal/C++ case studies for use on the exam. Provided workshops
for high school and college consultants in making transition to object oriented programming.
Critique free response questions that are part of the national exam (2002, 2004).

Case-Study author, AP Computer Science Educational Testing Service
1994 –. Write the case study for use in the 1997-2000 AP exams. Write the code for the case
study used in the 2001-2004 exams. A case is a “literate program”, a treatise on the design,
development, and implementation of a programming solution to a problem.

VII. Panels/Conference Acitivies

CS Principles: Piloting a New Course at National Scale, SIGCSE, Dallas, 2011 (with Larry Snyder,
Tiffany Barnes, Dan Garcia, Jody Paul, Beth Simon).

The CS10K Project: Mobilizing the Community to Transform High School Computing SIGCSE, Dallas,
2011 (with Jan Cuny, Chris Stephenson, and Cameron Wilson)

The CS/10K Project, CRA/Snowbird Conference, Snowbird UTAH, July, 2010.
Code as a Metaphor for Computational Thinking, CSTA/CSIT Symposium, Google, Mountain View,

CA, July, 2010.
Re-imagining the First Year of Computer Science, SIGCSE, Milwaukee, WI, 2010 (with Lien Diaz,

Chris Stephenson, Jan Cuny, Amy Briggs)
FOSS Workshop, Free and Open Source Software, SIGCSE, Chattanooga, TN, 2009, invited speaker.
Computational Thinking Panel, SIGCSE, Chattanooga, TN, 2009 (with Amber Settle, Susanne Ham-

brusch, and Joan Peckham.
Advanced Placement Computer Science: The Future of Tracking the First Year of Instruction, Special

Session, SIGCSE, Chattanooga, TN, 2009 (with Henry Walker, Chris Stephenson, Lien Diaz,
and Jan Cuny)

Nifty Assignments, Special Session, SIGCSE, Chattanooga, TN, 2009 (with Nick Parlante)
Innovating our Self Image Special Session, SIGCSE, Portland, OR, 2008 (with Peter Denning)
Teaching Tips We Wish They Told Us Before We Started Special Session, SIGCSE, Cincinnati, OH,

2007 (with Dan Garcia, Nick Parlante, Stuart Reges).
Resolved: Objects Early Has Failed SIGCSE, St. Louis, 2005, Special Session (with Stuart Reges, Kim

Bruce, Michael Kölling, Elliot Koffman).
But it Looks Rights: Bugs Students Don’t See SIGCSE, Norfolk, 2004, Special Session (with David

Ginat, Daniel Garcia, Mark Guzdial).
Colorful Illustrations of Algorithmic Design Techniques SIGCSE, Charlotte, 2001, Special Session (with

David Ginat, Joseph Bergin, Dan Garcia).
Nifty Assignments in CS1 and CS2, Panelist, SIGCSE, Charlotte, 2001 (with Michael Clancy, Nick

Parlante, Rich Pattis, Stuart Reges, Julie Zelenski).
FYI 2000: First Year Instruction, developed, organized, and chaired a workshop on first year instruc-

tion in computer science. The workshop had invited talks from both industry (Jon Bentley)
and academia (Shriram Krishnamurthy, Richard Pattis) and was attended by more than 40 fac-
ulty from across the country. The workshop was sponsored by NSF, Microsoft, and the Duke
Computer Science Department.

9

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page105 of 153

Patterns in Computer Science, (co-organizer with Eugene Wallingford), SIGCSE. Austin, TX. March
2000.

The Future of Advanced Placement Computer Science (panel). SIGCSE Technical Symposium on
Computer Science Education. Austin, TX, 2000. With Corky Cartwright, David Gries, Cay
Horstmann, Richard Kick, Fran Trees, Henry Walker, Ursula Wolz.

Nifty Assignments in CS1 and CS2, Panelist, SIGCSE, New Orleans, 1999 (with Michael Clancy, Nick
Parlante, Rich Pattis, Stuart Reges, Julie Zelenski).

Incorporating Patterns into CS courses and Writing Patterns for CS Courses (co-organizer with Eugene
Wallingford). SIGCSE, New Orleans, March 1999.

Future Directions in CS2 and Data Structures. Organized and ran the workshop that was held in
conjunction with OOSPLA-98, Vancouver, CA, October 1998 (20 participants)

Object Oriented Design. Invited Participant, OOPSLA-97, Atlanta, Georgia, 1997.

Teaching Object-Oriented Programming: Practical Examples Using C++ and Java, Tutorial at PLDI
97, Las Vegas, Nevada, June 1997.

Future Directions in Data Structures and CS2. Organized and ran two-day workshop held at Duke
co-sponsored by NSF, 32 participants, March, 2000.

Teaching Object-Oriented Design in the first year. Invited speaker and participant. OOPSLA-96, San
Jose, CA, October, 1996.

Strategic Directions in Computing Research (SDCR), working group in Computer Science Education.
Sponsored by ACM, CRA, and NSF, Boston, MA, June, 1996.

How to teach C++ in Introductory Courses, Tutorial part of PLDI, FCRC 1996, Philadelphia, PA,
sponsored by SIGPLAN

Formal Methods Considered [Help — Harm]ful: Engaging students in the first year. Exploring Formal
Methods in the Early Computer Science Curriculum, Joint NSF/US Department of Education
Workshop. September 16, 1995 (invited speaker).

Developing an Object-Oriented Class Library. NSF sponsored workshop. Colgate University, June
1995. (invited participant)

A Sorcerer’s Apprentice Approach to using C++ in CS1. NECUSE (New England Consortium on
Undergraduate Science Education) Workshop in Introductory Computer Science Curricula. Jan-
uary 1995.

Measuring Performance of Automated Theorem Provers (with D. W. Loveland). Twelfth Conference
on Automated Deduction (CADE-12), Workshop on Evaluation of Automated Theorem Proving
Systems. Nancy, France, 1994.

Acquiring Object-Oriented Technology: A Bridge between Industry and Academia (invited partici-
pant). US West, Boulder Colorado, March 1994.

OOP: An introduction for Secondary School Teachers. Workshop delivered to secondary school com-
puter science teachers in Dallas, TX, August 1993.

Simulation: A vehicle for exploring OOP. Object-Oriented Curriculum Development Workshop. NSF
sponsored workshop. Colgate University, July 1993. (with Claire Bono)

A Tapestry of Fundamental Ideas and Concepts in Computer Science: a Programming, Contextural
View for Liberal Arts Students L**3: Logic, Loops, and Literacy. NSF sponsored workshop on
computer science for non-majors, Brooklyn College, May 1993.

Human Interaction with a High-Performance Theorem Prover. International Joint Conference on
Artificial Intelligence. Workshop on Automated Theorem Proving. Chambery, France, 1993.
(with D.W. Loveland)

Logic Programming Considered Harmful? Joint Internatinal Conference on Logic Programming. Pro-
log as a first language track, Washington DC, November 1993.

Caching to reduce redundancy in Model Elimination Theorem Provers. Joint Japanese-American
workshop in Automated Theorem Proving, Argonne National Labs, June 1991.

10

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page106 of 153

The METEOR implementations of the Model Elimination procedure. Workshop on Proof Theory and
Automated Theorem Proving. Oberwolfach, Germany, April 1991. (with D.W. Loveland)

Online Exams in Advanced Placement Computer Science. National Council of Teachers of Mathematics
Conference. San Francisco, April 1984.

VIII. Invited Lectures, Talks, and Workshops.

Code as a Metaphor for Computational Thinking, Harambeenet workshop, Durham, NC, July 2010.

CS Principles and the CS10K project, NSF, BPC Community Meeting, Los Angeles, February, 2010.

CCSC: Midwest, Keynote Speaker, “A New Way of Thinking about Computational Thining”, St.
Xavier University, Chicago, October 2009.

National Academies: Workshop on Computational Thinking February 2009.

Problem-Centric Learning, Sept 2008, Rochester Institute of Technology

What is Computer Science?, April 2008, NSF CPATH, Living in the Knowledge Society.

Problems in AP Computer Science, June 2008, Advanced Placement Computer Science Reading, Pro-
fessional Development Night.

CPATH: Science and Computer Science Purde University, November 2007.

CPATH: Problem-based Learning Keynote, Workshop sponsored by Argonne Labs and Governors Uni-
versity, November 2007.

Microsoft Computational Thinking Summit Redmond, WA, September 2007.

Google Faculty Summit, Mountain View, CA, July 2007.

HarambeNet: Introducing Computer Science through Modeling and Analysis of Social Networks SIGCSE
2007 Workshop, with Jeffrey Forbes.

The Cruelty of Really Teaching Computer Science Redux, University of California, Riverside, January
2006.

The Cruelty of Really Teaching Computer Science Redux, University of British Columbia Computer
Science Distinguished Lecturer Series, Fall 2005.

The Cruelty of Really Teaching Computer Science Redux, University of Washington Computer Science
Distinguished Lecturer Series, Fall 2005.

The Cruelty of Really Teaching Computer Science Redux, Keynote talk at CCSC/SE, Consortium of
Computing Sciences in Colleges, Southeast US, November 2005.

The Cruelty of Really Teaching Computer Science Redux, Keynote talk at CCSC/E, Consortium of
Computing Sciences in Colleges, Eastern US, October 2005.

A Random Walk Through Computer Science, Invited/Keynote Talk at ACM/Student conference Re-
flections/Projections, University Illinois, Oct. 2004.

20 Years of Teaching Computer Science, invited talk at NSF Workshop for high school teachers,
Stonehill College, October 2004.

Everything I Needed to Know about Programming and Computer Science I Learned from my Teachers,
Keynote Talk, SIGCSE, Norfolk 2004.

Using Patterns in the First Year, invited tutorial and presentation as part of the 2000 Eastern Small
College Computing Conference, University of Scranton, PA.

OO Design and Patterns, invited speaker at NSF-sponsored workshop for high school teachers at
Stonehill College, June 2000.

Advanced OO Programming, invited speaker at NSF-sponsored workshop for high school teachers at
Stonehill College, January 1999.

Object-Oriented Design and Programming. Three-day lecture/workshop co-taught with David Gries
delivered to educators from business colleges in Denmark, October, 1998.

11

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page107 of 153

Possible Futures for CS2 (panelist). SIGCSE Technical Symposium on Computer Science Education.
Atlanta, GA, 1998.

Teaching C++ in AP Courses: Four day workshop designed and delivered for the College Board, June
and August, 1997.

The First Computer Science Course and C++: Paradigm Lost or Regained. DIMACS workshop on
Discrete Mathematics, July, 1996.

C++ in the Advanced Placement Program. AP Computer Science Reading, Professional Night, Clem-
son, SC. June, 1996.

Use of C++ for CS1 and CS2, Computing Science Conference, Philadelphia, PA, 1996.
The First Year: Beyond Language Issues, (moderator and proposer), SIGCSE Technical Symposium

on Computer Science Education. Philadelphia, PA, 1996.
Advanced Placement and C++: Opening a Dialogue, (moderator and proposer), SIGCSE Technical

Symposium on Computer Science Education. Philadelphia, PA, 1996.
Object-Oriented Programming: How to “Scale Up” CS1. SIGCSE Technical Symposium on Computer

Science Education. Phoenix, Arizona, 1994.
Themes and Tapestries: A Diversity of Approaches to Computer Science for Liberal Arts Students.

SIGCSE Technical Symposium on Computer Science Education. Phoenix, Arizona, 1994.
Using Case Studies in Computer Science Courses. SIGCSE Technical Symposium on Computer Science

Education. Phoenix, Arizona, 1994.
On Computer Science and Teaching Computer Science with some perspectives from automated Rea-

soning. Bryn Mawr College, January 1993.
Faster, Fairer and More Consistent Grading Techniques: Lessons From the Advanced Placement Read-

ing SIGCSE Technical Symposium on Computer Science Education. Washington D.C., 1990.
The Pleasures and Perils of Teaching Introductory Computer Science. North Carolina Council of

Teachers of Mathematics Conference, November 1990.
Teaching Recursion in Introductory Computer Science Courses. North Carolina Council of Teachers

of Mathematics Conference. November 1986.

IX. Professional Affiliations

Member of ACM, IEEE Computer Society, SIGPLAN, SIGCSE, SIGACT, SIGCHI, SIGART, SIG-
SOFT, Sigma Xi.

X. Research Funding

2009, NSF IIS, Special Projects: Using Computational Thinking to Model a New Course: Advanced
Placement Computer Science: Principles, $2,093,450.00, funding to College Board, PI.

2008, NSF BPC, Computational Thinking and Fluency in the 21st Century. $98,415. Submitted by
College Board, PI.

2007, NSF CPATH, CISE Distinguished Education Fellow Interdisciplinary Problem- and Case-based
Computer Science, $250K over two years, one of two inaugural CDEF awardees in Computer
Science.

2004 IBM Faculty Fellow, Issues in Large-scale Software Componentization, $40K grant.
2002-2003 $28K, IBM Echelon: Eclipse Help for Learning Online.
2002 $400K. IBM SUR, Education/Research Grant for establishing COD (Cluster On Demand) (co-PI

with Richard Lucic, Amin Vahdat, Jeff Chase).
2002 $1,500, OOPSLA Educator’s Grant: Using Design Patterns (declined)
2001 $1,500, OOPSLA Educator’s Grant: Using Design Patterns (declined)
2001 $120,000 IBM Education/Research Grant for establishing a teaching/cluster classroom (co-PI

with Susan Rodger, Richard Lucic, Kishor Trivedi, Amin Vahdat, Jeff Chase, the $120,000 is
just the education part of the grant, each of three groups was awarded a similar amount. This
was part of a $1.7 million SUR grant from IBM, some of which was software and related support.)

12

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page108 of 153

2000-2005, $480,826, NSF, Modules and Courses for Ubiquitous and Mobile Computing, NSF CRCD
0088078, PI, co-PIs Prof. Carla Ellis, Prof. Amin Vahdat.

2000, $1.19 million Microsoft Interactive Research/Teaching Classroom, with Jeffrey Vitter, Richard
Lucic, Jeffrey Chase, Carla Ellis,Deitolf Ramm, Susan Rodger, Amin Vahdat. This includes
$750,000 in software support and the rest in equipment, construction, and staffing support.

1998 $223,179 equipment Establishing Interactive Collaborative Classrooms Hewlett-Packard University
Grants Program, co-PI with Susan Rodger

1998 $1,500, OOPSLA Educator’s Grant: Using Design Patterns

1998 $50,000 Microsoft Eductional Development Grant, co-PI with Susan Rodger and Jeffrey Vitter

1998–2001 $150,306 U.S. Dept of Education GANN (co-PI with Jeff Chase, Carla Ellis, Alvin Lebeck,
Jeffrey Vitter)

1997–1998 $80,000 equipment (part of a $1.6 million grant) from Intel supporting computer science
education at Duke.

1997 $1,200, OOPSLA Educator’s Grant: Using Design Patterns

1997–2002, $200,004, “Using and Developing Design Patterns”, National Science Foundation: CA-
REER Program, CAREER #9702550

1996, $1,700, OOPSLA Educator’s Grant: Using Design Patterns

1996–1997, $119,382, “The Applied Apprenticeship Approach (AAA): An Object-Oriented/Object-
Based Framework for CS2”, National Science Foundation Course and Curriculum Development,
grant#DUE-9554910.

1996–2001, $607,800, “CURIOUS: The Center for Undergraduate Education and Research: Integration
Through Performance and Visualization”, NSF CISE Educational Infrastructure Program, grant
#CISE-9634475 (co-PI with Prof. Susan Rodger)

1996–1998, $13,080 “U.S.-Germany Cooperative Research to Enhance the Performance of the Model
Elimination Proof Procedure” (co-PI with Prof. Donald Loveland), National Science Foundation
INT-9514375

1995, $1,000, OOPSLA Educator’s Grant: Design Patterns in the Introductory CS Curriculum.

XI. Research Interests

Problem-centric Learning,Software Architecture, Object-oriented systems and languages, Computer
Science Education, Networked and Distributed Computing, Automated Theorem Proving, Automated
Reasoning, Parallel and Distributed Computing.

XII. Teaching

2002, Winner of the Richard K Lublin Award. Cited for “Ability to engender genuine intellectual
excitement, ability to engender curiousity, knowledge of field and ability to communicate that
knowledge, organizational skills, creative arrangement of course.”

1999, Winner of Outstanding Instructor of Computer Science Award while on sabbatical at University
of British Columbia (teaching CPSC 252, a course on Data Structures for approximately 250
Engineering students).

1995, Trinity College, Robert B. Cox Distinguished Teaching in Science Award. Cited for “knowledge of
field and ability to communicate it to students, openness to students, skill in organizing courses,
commitment to teaching over time.”

1994, 1996, 2001, 2002 Nominated by undergraduates for outstanding teaching/faculty award (one of
approximately 30 faculty nominated campus-wide each year).

Course and Curriculum Design/Implementation

13

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page109 of 153

CPS 53 – Program Analysis and Design I, Fall 1993
In 1993 I led the redesign of the core courses for majors (CPS 06, 08, and 100) to introduce
object-oriented programming using C++ and an apprentice style of learning. This led to the
development of new courses, described below. This redesign was a significant departure from
the C-based courses that had been in place for three years requiring a large-scale change in
philosophy as well as significant efforts in developing programming libraries to make the use of
C++ feasible for students with no programming experience. This redesign has led to several
publications and an NSF grant awarded in December of 1995.

CPS 100E - Program Analysis and Design II, Fall 1995 –
Created a new course for students with programming experience acquired elsewhere (not at
Duke), replacing Computer Science 8 and accelerating students into the major. The course
reviews material from the end of CPS 6 and then covers material from CPS 100. A formal
laboratory component makes this possible. (with S. Rodger)

CPS 108 – Software Design and Implementation, Spring 1995 –
Designed and taught a new course required for all majors (in 1994 formalized the requirement).
The course covers advanced object-oriented programming; introducing GUI programming using
C++ and Java while emphasizing significant individual and team projects using object-oriented
design, analysis, and programming.
In 1995 I established a new software design and engineering component of the curriculum via the
course CPS 108. This curricular change led to an NSF CAREER grant for using and developing
patterns in teaching software design and introductory programming.

CPS 149S - Problem Solving Seminar, Fall 1994
Created a new seminar course for problem solving, to prepare students for the ACM programming
contest. Students worked previous contest problems once a week, and two mini-contests were
held. Two teams participated in the regional contest with one team placing first.

CPS 182S – Technical and Social Analysis of Information and the Internet
Designed to meet the needs of Duke’s Curriculum 2000. Satisfies, research and writing require-
ments and science technology and society requirement.

The development of technical and social standards governing the Internet and Informa-
tion Technology in general. The role of software as it relates to law, patents, intellectual
property, and IETF (Internet Engineering Task Force) standards. Written analysis of
issues from a technical perspective with an emphasis on the role of software; but also
on how standards relate to social and ethical issues.

In 2002 I designed and had approved CPS 182S, Technical and Social Analysis of Information
and the Internet a course which R, W, and STS designations as part of Duke’s Curriculum 2000
(research, writing, and science, technology and society, respectively). This course led to another,
non-major’s version of the course in 2008, to publications, and is part of the genesis for the new
NSF CS Principles project.

CPS 004G – Programming for Bioinformatics
Designed as one course in a four-course, integrative and interdisciplinary program The Genome
Revolution: Society and Science for first year students as part of Duke’s FOCUS program.
The course introduces programming in the context of solving problems from bioinformatics and
computational biology.
In 2006 I used this course as a foundation, with work done by Alex Hartemink in our depart-
ment on a more advanced course, to help spearhead and oversee the process leading to the
approval of Duke’s first interdepartmental and interdisciplinary minor: Computational Biology
and Bioinformatics.

Compsci 82, Technical and Social Foundations of the Internet
In 2008 I used Compsci 182S (see above) as a model for developing Compsci 82, a course without
the writing component, but with an Ethical Inquiry (EI) designation. This course was taught
in the fall of 2008 to 239 students, the third largest enrollment for a one-section course at Duke.

14

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page110 of 153

In 2009 I taught this course to 345 students, the second largest course at Duke and the largest
course that does not satisfy a major requirement. In 2010 I again taught the course to 345
students; the course was the largest single-section course taught at Duke.

Compsci 6, Introduction to Computer Science
In 2010 I oversaw the development of a new, introductory course in computer science: Compsci
6, the new description for the course follows.

Introduction practices and principles of computer science and programming and their
impact on and potential to change the world. Algorithmic, problem-solving, and pro-
gramming techniques in domains such as art, data visualization, mathematics, natural
and social sciences. Programming using high-level languages and design techniques em-
phasizing abstraction, encapsulation, and problem decomposition. Design, implemen-
tation, testing, and analysis of algorithms and programs. No previous programming
experience required.

This course is intended to appeal to a wider and more diverse audience than our previous version
of the course. I developed the infrastructure for the course including developing materials used
to teach Python, deciding on the libraries used, and developing the software infrastructure to
support the use of Python. I worked with Robert Duvall to deliver the first version of this course
in the fall of 2010.

15

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page111 of 153

Courses Taught

In the list below, CPS 08/53 corresponds to CS 1 and CPS 100/103 corresponds to CS 2 (courses
were renumbered in 1994). CPS 206 is a graduate level programming-languages course. CPS 10 is a
comprehensive/breadth first introduction to Computer Science for non-majors.

Date Number Title Enrollment
2010 Spring Compsci 149s Problem Solving Seminar 12

Compsci 100 Program Design and Analysis II 55
Compsci 182s Technical and Social Foundations of the Internet 18

Fall Compsci 149s Problem Solving Seminar 8
Compsci 006 Introduction to Computer Science 79
Compsci 82 Technical and Social Foundations of the Internet 345

2009 Spring Compsci 149s Problem Solving Seminar 11
Compsci 100 Program Design and Analysis II 29
Compsci 182s Technical and Social Foundations of the Internet 20

Fall Compsci 149s Problem Solving Seminar 8
Compsci 100 Program Design and Analysis II 41
Compsci 82 Technical and Social Foundations of the Internet 345

2008 Spring Compsci 149S Problem Solving Seminar 7+
Compsci 100 Program Design and Analysis II 33
Compsci 82S Technical and Social Foundations of the Internet 23

Fall Compsci 82 Technical and Social Foundations of the Internet 239
Compsci 100 Program Design and Analysis II 39
Compsci 149s Problem Solving Seminar 8+

2007 Spring Compsci 149S Problem Solving Seminar 8+
Fall Compsci 4G Genomics Programming (FOCUS) 16

Compsci 108 Software Design 44
Compsci 149s Problem Solving Seminar 5+

2006 Spring CPS 182s Technical and Social Analysis of the Internet 20
CPS 100 Program Design and Analysis II 24
CPS 149S Problem Solving Seminar 4+

Fall CPS 004g Introduction to Programming with Genomics (FOCUS) 11
CPS 100 Program Design and Analysis II 36
CPS 149S Problem Solving Seminar 4+

2005 Fall CPS 004G Introduction to Programming with Genomics (FOCUS) 17
CPS 108 Software Design and Implementation 32
CPS 149S Problem Solving Seminar 3

2005 Spring CPS 182s Technical and Social Analysis of the Internet 15
CPS 149S Problem Solving Seminar 4

2004 Fall CPS 006G Introduction to Programming with Genomics (FOCUS) 15
CPS 100 Program Design and Analysis II 35
CPS 149S Problem Solving Seminar 7

2004 Spring CPS 100 Program Design and Analysis II 35
CPS 149S Problem Solving Seminar 7
CPS 108 Software Design and Implementation 45

2003 Fall CPS 006X Program Design and Analysis I (honors) 20
CPS 182S Technical and Social Analysis of the Internet 35
CPS 149S Problem Solving Seminar 7

2003 Spring CPS 100 Program Design and Analysis II 68
CPS 108 Software Design and Implementation 99

16

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page112 of 153

Date Number Title Enrollment
2002 Fall CPS 182s Technical and Social Analysis of the Internet 43

CPS 149S Problem Solving Seminar 5
2002 Spring CPS 100 Program Design and Analysis II 105

2001 Fall CPS 108 Software Design and Implementation 64
CPS 06 Program Design adn Analysis I 105
CPS 149S Problem Solving Seminar 13

2001 Spring CPS 108 Software Design and Implementation 124
CPS 100 Program Design and Analysis II 114
CPS 189S CS Education Seminar 3

2000 Fall CPS 100 Program Design and Analysis II 88
CPS 149S Problem Solving Seminar 14
CPS 189S CS Education Seminar 6

2000 Spring CPS 100 Program Design and Analysis II 107

1999 Fall CPS 108 Software Design and Implementation 115
CPS 06 Program Design and Analysis I 173

1998 Fall CS 252 (UBC) Data Structures,CS2 163

1998 Spring CPS 108 Software Design and Implementation 94
CPS 196 Advanced Topics in OO Technology (seminar) 14

1997 Fall CPS 100 Program Design and Analysis II 61
CPS 108 Software Design and Implementation 63
CPS 149S Problem Solving Seminar 18

1997 Spring CPS 100 Program Design and Analysis II 72
CPS 108 Software Design and Implementation 65

1996 Fall CPS 100E Program Design and Analysis II 70
CPS 108 Software Design and Implementation 58
CPS 149S Problem Solving Seminar 17

1996 Spring CPS 100 Program Design and Analysis II 72
CPS 108 Software Design and Implementation 40
CPS 208 Software Design and Implementation 15

17

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page113 of 153

Date Number Title Enrollment
1995 Fall CPS 6 Intro. to Program Design/Analysis I 121

(Team taught with S. Rodger)
CPS 100 Program Design and Analysis II 56
(Team taught with S. Rodger)
CPS 100E Program Design and Analysis II 55
(Team taught with S. Rodger)
CPS 149S Problem Solving Seminar 14
(Team taught with S. Rodger)

Spring CPS 108 Software Design and Implementation 38
CPS 8 Intro. to Program/Design Analysis I 70

1994 Fall CPS 8 Intro. to Program Design/Analysis I 63
CPS 100 Program Design and Analysis II 45

Spring CPS 8 Intro. to Program Design/Analysis I 67
CPS 100 Program Design and Analysis II 43

1993 Fall CPS 8 Intro. to Program Design/Analyis I 39
CPS 100 Program Design and Analysis II 29

Spring CPS 100 Program Design and Analysis II 48
CPS 206 Programming Languages (graduate) 6

1992 Spring CPS 10 Fundamentals of Computing 67
1991 Fall CPS 10 Fundamentals of Computing 135
1987 Fall CPS 51 Introduction to Programming 90
1987 Spring CPS 51 Introduction to Programming 101
1986 Fall CPS 51 Introduction to Programming 196

Thesis Advising

2004: Megan Murphy, The Uses of Pair Programming in Introductory Computer Science Courses,
thesis for graduation with distinction.

2004: Megan Gessner, Generation of Spanish Verb Conjugations, thesis for graduation with distinction.

2002: Donald Onyango, Comparison of Eduational Tools, Masters Thesis.

1998: Matthew Kotler, An interactive CD-based Guide to Duke University, undergraduate thesis for
graduation with Highest Distinction.

1998: Eric Jewart, Programming in CS 0, undergraduate thesis for graduation with High Distinction.

1998: Tafawa Kesler, GOODS: A Design and Class Building Tool, undergraduate thesis for graduation
with Distinction.

1997: Chih-ping Fu, Towards a Java Bean Building and Using Environment, Masters Thesis.

Independent Study

Fall 2006, Spring 2007 Computer and Mathematical Models of Insulin Pathways Tiffany Chen, gradua-
tion with distinction, interdepartmental major, Computer Science and Biology (supervised from
Biology by Fred Nijhout).

Fall 2005, Industry/Academic software developement with .NET technologies (with Glaxo-Smith-
Kline)

Spring 2005, Web-tools for Russian Vocabulary

Spring 2004, Agile Methods and Programming for Spanish

18

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page114 of 153

Fall 2002, Patterns for Networked Games

Fall 2002, Online Grading

Fall 2001, Database-backed web sites: issues and solutions.

Fall 2000, A Framework for an online Calendar System supporting IETF standards

Spring 1998, Developing a CD-based guide to Duke, Advanced OO Design: A Class Browser

Fall 1997, Advanced Object Oriented Design, Interactive Web-based Journaling, Developing a CD-
based guide to Duke

Spring 1997, Graphical Debugging

Spring 1997, Distance Learning using a Java Whiteboard

Fall 1996, On-line help by harvesting information with a GUI front end.

Fall 1996, Using C++ in High School Teaching.

Fall 1995, Graphics and Game programming for the Macintosh (6 students).

Summer 1995, Using C++ in High School Teaching

Spring 1995, A GUI/OO interface for air-quality modeling.

Spring 1995, Graphics Programming for the Macintosh.

Spring 1995, Object-Oriented Programming with Smalltalk.

Fall 1994, Implementing an Online Teacher Course Evaluation Book.

Spring 1994, An application-driven approach to foundations of computer science.

Summer 1994, The role of Computer Science for secondary school mathematics teachers.

Summer 1994, Computation Structures and Machine Organization.

Fall 1989, Graphical Display and Manipulation of Data Structures for the Macintosh.

19

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page115 of 153

1
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

EXHIBIT B: DOCUMENTS AND INFORMATION REVIEWED

a. Oracle’s First Amended Complaint

b. Google’s Answer to First Amended Complaint and Counterclaims

c. Oracle’s Supplemental Responses to Google’s Interrogatories, Set No. 1

d. The Android developer website at android.com

e. The Oracle Java websites at java.sun.com and java.oracle.com, including

http://java.sun.com/docs/white/platform/javaplatform.doc1.html,

http://java.sun.com/docs/books/jls/first_edition/html/index.html,

http://java.sun.com/docs/glossary.html

f. Source code, documentation, and discussion boards and blogs for Oracle’s

implementation of the APIs at issue, including

http://download.oracle.com/javase/5/docs/index.html,

http://download.oracle.com/javase/1.4/docs/index.html, and

http://markmail.org/thread/xwyxemce75vvz33h#query:+page:1+mid:vnipd7bqzs5vxfjw+

state:results

g. Source code and documentation for Android’s implementation of the APIs at issue,

including http://developer.android.com/reference/packages.html and

http://android.git.kernel.org/?

p=platform/libcore.git;a=history;f=luni/src/test/java/org/apache/harmony/security/tests/ja

va/security/CodeSourceTest.java;hb=a49d9caee4cd74c0d2cf83d79b8ecdc00453dff8

h. Source code and documentation for Apache Harmony’s implementation of the APIs at

issue, including http://svn.apache.org, http://harmony.apache.org/faq.html and

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page116 of 153

2
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

http://harmony.apache.org/subcomponents/classlibrary/compat.html

i. Source code and documentation for GNU Classpath’s implementation of the APIs at

issue, including http://www.gnu.org/software/classpath/docs/

j. Wikipedia, Application programming interface,

http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=43

7864024 (as of July 13, 2011, 00:30 GMT)

k. Newton’s Telecom Dictionary, 25th Edition

l. Oracle SQL: The Essential Reference,” David C. Kreines (2000)

m. C Reference Manual, Dennis Ritchie, 1975, available at http://www.cs.bell-

labs.com/who/dmr/cman.pdf

n. ZLib Manual, available at http://www.zlib.net/manual.html

o. Merriam-Webster Dictionary online

p. Dictionary.com

q. “Revised Report on the Algorithmic Language ALGOL 68”, available at http://www.fh-

jena.de/~kleine/history/languages/Algol68-RevisedReport.pdf

r. “The C Family of Languages: Interview with Dennis Ritchie, Bjarne Stroustrup, and

James Gosling,” Java Report, 5(7), July 2000, available at

http://www.gotw.ca/publications/c_family_interview.htm

s. “The Feeling of Java,” James Gosling, Computer, Vol. 30, Issue 6, June 1997

t. Mastering Regular Expressions, Jeffrey E. F. Friedl, O'Reilly and Associates, 1997

u. “Programming Techniques: Regular expression search algorithm,” Ken Thompson,

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page117 of 153

3
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

Communications of the ACM, Vol. 11, Issue 6, June 1968

v. “SEQUEL: A structured English query language,” Proc. ACM SIGFIDET Workshop,

May 1974, pp. 249-264

w. JDBC 3.0 Specification, available at

http://jcp.org/aboutJava/communityprocess/first/jsr054/jdbc-3_0-pfd-spec.pdf

x. X/Open: Data Management: SQL Call Level Interface (CLI), available at

http://pubs.opengroup.org/onlinepubs/009654899/toc.pdf

y. Linux kernel 2.4 source code as available at

http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.4.37.y.git, including

http://git.kernel.org/?p=linux/kernel/git/stable/linux-

2.4.37.y.git;a=blob;f=fs/proc/array.c;h=335226246dcafa18864e87c2f7be68f48a50b924;h

b=HEAD

z. Solaris source code and revision history as available at

http://cvs.opensolaris.org/source/xref/onnv, including

http://cvs.opensolaris.org/source/history/onnv/onnv-

gate/usr/src/uts/common/syscall/uucopy.c and

http://cvs.opensolaris.org/source/history/onnv/onnv-gate/usr/src/uts/common/brand/; and

also as archived at http://hg.genunix.org/onnv-gate.hg/; including

http://hg.genunix.org/onnv-gate.hg/rev/4c5722bc28dc

aa. BrandZ documentation at

http://hub.opensolaris.org/bin/view/Community+Group+brandz/

WebHome and related web pages, including

http://hub.opensolaris.org/bin/download/Community+Group+brandz/

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page118 of 153

4
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

WebHome/brandzoverview.pdf and

http://hub.opensolaris.org/bin/view/Community+Group+brandz/design

bb. “Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux,” 2002, available at

http://kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf

cc. Futex(2) manual page, available at http://www.kernel.org/doc/man-

pages/online/pages/man2/futex.2.html

dd. “Excel functions (by category),” http://office.microsoft.com/en-us/excel-help/excel-

functions-by-category-HP005204211.aspx

ee. “Calc Functions listed by category,”

http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_Functions_listed

_by_category

ff. Visicalc Reference Card, available at http://www.bricklin.com/history/refcard1.htm

gg. “Oracle® Database Application Developer's Guide - Fundamentals,” available at

http://download.oracle.com/docs/cd/B14117_01/appdev.101/b10795/toc.htm

hh. “System R: relational approach to database management,” M. M. Astrahan et al; ACM

Transactions on Database Systems; Vol. 1, Issue 2, June 1976.

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page119 of 153

1
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

EXHIBIT C: EXCEL AND STAROFFICE SPREADSHEET FUNCTION NAMES

Microsoft Excel
2003

Oracle Open
Office Calc
(Today)

ABS ABS

ACCRINT ACCRINT

ACCRINTM ACCRINTM

ACOS ACOS

ACOSH ACOSH

ACOT

ACOTH

ADDRESS ADDRESS

AMORDEGRC AMORDEGRC

AMORLINC AMORLINC

AND AND

ARABIC

AREAS AREAS

ASC

ASIN ASIN

ASINH ASINH

ATAN ATAN

ATAN2 ATAN2

ATANH ATANH

AVEDEV AVEDEV

AVERAGE AVERAGE

AVERAGEA AVERAGEA

BAHTTEXT BAHTTEXT

BASE

BESSELI BESSELI

BESSELJ BESSELJ

BESSELK BESSELK

BESSELY BESSELY

BETADIST BETADIST

BETAINV BETAINV

BIN2DEC BIN2DEC

BIN2HEX BIN2HEX

BIN2OCT BIN2OCT

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page120 of 153

2
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

BINOMDIST BINOMDIST

CEILING CEILING

CELL CELL

CHAR CHAR

CHIDIST CHIDIST

CHIINV CHIINV

CHISQDIST

CHISQINV

CHITEST CHITEST

CHOOSE CHOOSE

CLEAN CLEAN

CODE CODE

COLUMN COLUMN

COLUMNS COLUMNS

COM

COMBIN COMBIN

COMBINA

COMPLEX COMPLEX

CONCATENATE CONCATENATE

CONFIDENCE CONFIDENCE

CONVERT CONVERT

CONVERT_ADD

CORREL CORREL

COS COS

COSH COSH

COT

COTH

COUNT COUNT

COUNTA COUNTA

COUNTBLANK COUNTBLANK

COUNTIF COUNTIF

COUPDAYBS COUPDAYBS

COUPDAYS COUPDAYS

COUPDAYSNC COUPDAYSNC

COUPNCD COUPNCD

COUPNUM COUPNUM

COUPPCD COUPPCD

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page121 of 153

3
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

COVAR COVAR

CRITBINOM CRITBINOM

CUMIPMT CUMIPMT

CUMIPMT_ADD

CUMPRINC CUMPRINC

CUMPRINC_ADD

CURRENT

DATE DATE

DATEVALUE DATEVALUE

DAVERAGE DAVERAGE

DAY DAY

DAYS

DAYS360 DAYS360

DAYSINMONTH

DAYSINYEAR

DB DB

DCOUNT DCOUNT

DCOUNTA DCOUNTA

DDB DDB

DDE

DEC2BIN DEC2BIN

DEC2HEX DEC2HEX

DEC2OCT DEC2OCT

DECIMAL

DEGREES DEGREES

DELTA DELTA

DEVSQ DEVSQ

DGET DGET

DISC DISC

DMAX DMAX

DMIN DMIN

DOLLAR DOLLAR

DOLLARDE DOLLARDE

DOLLARFR DOLLARFR

DPRODUCT DPRODUCT

DSTDEV DSTDEV

DSTDEVP DSTDEVP

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page122 of 153

4
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

DSUM DSUM

DURATION DURATION

DURATION_ADD

DVAR DVAR

DVARP DVARP

EASTERSUNDAY

EDATE EDATE

EFFECT EFFECT_ADD

EFFECTIVE

EOMONTH EOMONTH

ERF ERF

ERFC ERFC

ERROR.TYPE ERRORTYPE

EUROCONVERT

EVEN EVEN

EXACT EXACT

EXP EXP

EXPONDIST EXPONDIST

FACT FACT

FACTDOUBLE FACTDOUBLE

FALSE FALSE

FDIST FDIST

FIND FIND

FINDB

FINV FINV

FISHER FISHER

FISHERINV FISHERINV

FIXED FIXED

FLOOR FLOOR

FORECAST FORECAST

FORMULA

FREQUENCY FREQUENCY

FTEST FTEST

FV FV

FVSCHEDULE FVSCHEDULE

GAMMA

GAMMADIST GAMMADIST

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page123 of 153

5
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

GAMMAINV GAMMAINV

GAMMALN GAMMALN

GAUSS

GCD GCD

GCD_ADD

GEOMEAN GEOMEAN

GESTEP GESTEP

GETPIVOTDATA

GROWTH GROWTH

HARMEAN HARMEAN

HEX2BIN HEX2BIN

HEX2DEC HEX2DEC

HEX2OCT HEX2OCT

HLOOKUP HLOOKUP

HOUR HOUR

HYPERLINK HYPERLINK

HYPGEOMDIST HYPGEOMDIST

IF IF

IMABS IMABS

IMAGINARY IMAGINARY

IMARGUMENT IMARGUMENT

IMCONJUGATE IMCONJUGATE

IMCOS IMCOS

IMDIV IMDIV

IMEXP IMEXP

IMLN IMLN

IMLOG10 IMLOG10

IMLOG2 IMLOG2

IMPOWER IMPOWER

IMPRODUCT IMPRODUCT

IMREAL IMREAL

IMSIN IMSIN

IMSQRT IMSQRT

IMSUB IMSUB

IMSUM IMSUM

INDEX INDEX

INDIRECT INDIRECT

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page124 of 153

6
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

INFO INFO

INT INT

INTERCEPT INTERCEPT

INTRATE INTRATE

IPMT IPMT

IRR IRR

ISBLANK ISBLANK

ISERR ISERR

ISERROR ISERROR

ISEVEN ISEVEN

ISEVEN_ADD

ISFORMULA

ISLEAPYEAR

ISLOGICAL ISLOGICAL

ISNA ISNA

ISNONTEXT ISNONTEXT

ISNUMBER ISNUMBER

ISODD ISODD

ISODD_ADD

ISPMT ISPMT

ISREF ISREF

ISTEXT ISTEXT

IT

JIS

KURT KURT

LARGE LARGE

LCM LCM

LCM_ADD

LEFT LEFT

LEFTB

LEN LEN

LENB

LINEST LINEST

LN LN

LOG LOG

LOG10 LOG10

LOGEST LOGEST

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page125 of 153

7
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

LOGINV LOGINV

LOGNORMDIST LOGNORMDIST

LOOKUP LOOKUP

LOWER LOWER

MATCH MATCH

MAX MAX

MAXA MAXA

MDETERM MDETERM

MDURATION MDURATION

MEDIAN MEDIAN

MID MID

MIDB

MIN MIN

MINA MINA

MINUTE MINUTE

MINVERSE MINVERSE

MIRR MIRR

MMULT MMULT

MOD MOD

MODE MODE

MONTH MONTH

MONTHS

MROUND MROUND

MULTINOMIAL MULTINOMIAL

MUNIT

NA NA

NEGBINOMDIST NEGBINOMDIST

NETWORKDAYS NETWORKDAYS

NOMINAL NOMINAL

NOMINAL_ADD

NORMDIST NORMDIST

NORMINV NORMINV

NORMSDIST NORMSDIST

NORMSINV NORMSINV

NOT NOT

NOW NOW

NPER NPER

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page126 of 153

8
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

NPV NPV

OCT2BIN OCT2BIN

OCT2DEC OCT2DEC

OCT2HEX OCT2HEX

ODD ODD

ODDFPRICE ODDFPRICE

ODDFYIELD ODDFYIELD

ODDLPRICE ODDLPRICE

ODDLYIELD ODDLYIELD

OFFSET OFFSET

OR OR

PEARSON PEARSON

PERCENTILE PERCENTILE

PERCENTRANK PERCENTRANK

PERMUT PERMUT

PHONETIC

PERMUTATIONA

PHI

PI PI

PMT PMT

POISSON POISSON

POWER POWER

PPMT PPMT

PRICE PRICE

PRICEDISC PRICEDISC

PRICEMAT PRICEMAT

PROB PROB

PRODUCT PRODUCT

PROPER PROPER

PV PV

QUARTILE QUARTILE

QUOTIENT QUOTIENT

RADIANS RADIANS

RAND RAND

RANDBETWEEN RANDBETWEEN

RANK RANK

RATE RATE

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page127 of 153

9
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

RECEIVED RECEIVED

REPLACE REPLACE

REPLACEB

REPT REPT

RIGHT RIGHT

RIGHTB

ROMAN ROMAN

ROUND ROUND

ROUNDDOWN ROUNDDOWN

ROUNDUP ROUNDUP

ROW ROW

ROWS ROWS

RRI

RSQ RSQ

RTD

SEARCH SEARCH

SEARCHB

SECOND SECOND

SERIESSUM SERIESSUM

SHEET

SHEETS

SIGN SIGN

SIN SIN

SINH SINH

SKEW SKEW

SLN SLN

SLOPE SLOPE

SMALL SMALL

SQL.REQUEST

SQRT SQRT

SQRTPI SQRTPI

STANDARDIZE STANDARDIZE

STDEV STDEV

STDEVA STDEVA

STDEVP STDEVP

STDEVPA STDEVPA

STEYX STEYX

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page128 of 153

10
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

STYLE

SUBSTITUTE SUBSTITUTE

SUBTOTAL SUBTOTAL

SUM SUM

SUMIF SUMIF

SUMPRODUCT SUMPRODUCT

SUMSQ SUMSQ

SUMX2MY2 SUMX2MY2

SUMX2PY2 SUMX2PY2

SUMXMY2 SUMXMY2

SYD SYD

TAN TAN

TANH TANH

TBILLEQ TBILLEQ

TBILLPRICE TBILLPRICE

TBILLYIELD TBILLYIELD

TDIST TDIST

TEXT TEXT

TIME TIME

TIMEVALUE TIMEVALUE

TINV TINV

TODAY TODAY

TRANSPOSE TRANSPOSE

TREND TREND

TRIM TRIM

TRIMMEAN TRIMMEAN

TRUE TRUE

TRUNC TRUNC

TTEST TTEST

TYPE TYPE

UPPER UPPER

VALUE VALUE

VAR VAR

VARA VARA

VARP VARP

VARPA VARPA

VDB VDB

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page129 of 153

11
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

VLOOKUP VLOOKUP

WEEKDAY WEEKDAY

WEEKNUM WEEKNUM

WEEKNUM_ADD

WEEKS

WEEKSINYEAR

WEIBULL WEIBULL

WORKDAY WORKDAY

XIRR XIRR

XNPV XNPV

YEAR YEAR

YEARFRAC YEARFRAC

YEARS

YIELD YIELD

YIELDDISC YIELDDISC

YIELDMAT YIELDMAT

ZTEST ZTEST

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page130 of 153

1
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

EXHIBIT D: LX_BRAND SYSCALL TABLE

From lx_brand/common/lx_brand.c:

static struct lx_sysent sysents[] = {

{"nosys", NULL, NOSYS_NULL, 0}, /* 0 */

{"exit", lx_exit, 0, 1}, /* 1 */

{"fork", lx_fork, 0, 0}, /* 2 */

{"read", lx_read, 0, 3}, /* 3 */

{"write", write, SYS_PASSTHRU, 3}, /* 4 */

{"open", lx_open, 0, 3}, /* 5 */

{"close", close, SYS_PASSTHRU, 1}, /* 6 */

{"waitpid", lx_waitpid, 0, 3}, /* 7 */

{"creat", creat, SYS_PASSTHRU, 2}, /* 8 */

{"link", lx_link, 0, 2}, /* 9 */

{"unlink", lx_unlink, 0, 1}, /* 10 */

{"execve", lx_execve, 0, 3}, /* 11 */

{"chdir", chdir, SYS_PASSTHRU, 1}, /* 12 */

{"time", lx_time, 0, 1}, /* 13 */

{"mknod", lx_mknod, 0, 3}, /* 14 */

{"chmod", lx_chmod, 0, 2}, /* 15 */

{"lchown16", lx_lchown16, 0, 3}, /* 16 */

{"break", NULL, NOSYS_OBSOLETE, 0}, /* 17 */

{"stat", NULL, NOSYS_OBSOLETE, 0}, /* 18 */

{"lseek", lx_lseek, 0, 3}, /* 19 */

{"getpid", lx_getpid, 0, 0}, /* 20 */

{"mount", lx_mount, 0, 5}, /* 21 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page131 of 153

2
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"umount", lx_umount, 0, 1}, /* 22 */

{"setuid16", lx_setuid16, 0, 1}, /* 23 */

{"getuid16", lx_getuid16, 0, 0}, /* 24 */

{"stime", stime, SYS_PASSTHRU, 1}, /* 25 */

{"ptrace", lx_ptrace, 0, 4}, /* 26 */

{"alarm", (int (*)())alarm, SYS_PASSTHRU, 1}, /* 27 */

{"fstat", NULL, NOSYS_OBSOLETE, 0}, /* 28 */

{"pause", pause, SYS_PASSTHRU, 0}, /* 29 */

{"utime", lx_utime, 0, 2}, /* 30 */

{"stty", NULL, NOSYS_OBSOLETE, 0}, /* 31 */

{"gtty", NULL, NOSYS_OBSOLETE, 0}, /* 32 */

{"access", access, SYS_PASSTHRU, 2}, /* 33 */

{"nice", nice, SYS_PASSTHRU, 1}, /* 34 */

{"ftime", NULL, NOSYS_OBSOLETE, 0}, /* 35 */

{"sync", lx_sync, 0, 0}, /* 36 */

{"kill", lx_kill, 0, 2}, /* 37 */

{"rename", lx_rename, 0, 2}, /* 38 */

{"mkdir", mkdir, SYS_PASSTHRU, 2}, /* 39 */

{"rmdir", lx_rmdir, 0, 1}, /* 40 */

{"dup", dup, SYS_PASSTHRU, 1}, /* 41 */

{"pipe", lx_pipe, 0, 1}, /* 42 */

{"times", lx_times, 0, 1}, /* 43 */

{"prof", NULL, NOSYS_OBSOLETE, 0}, /* 44 */

{"brk", lx_brk, 0, 1}, /* 45 */

{"setgid16", lx_setgid16, 0, 1}, /* 46 */

{"getgid16", lx_getgid16, 0, 0}, /* 47 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page132 of 153

3
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"signal", lx_signal, 0, 2}, /* 48 */

{"geteuid16", lx_geteuid16, 0, 0}, /* 49 */

{"getegid16", lx_getegid16, 0, 0}, /* 50 */

{"acct", NULL, NOSYS_NO_EQUIV, 0}, /* 51 */

{"umount2", lx_umount2, 0, 2}, /* 52 */

{"lock", NULL, NOSYS_OBSOLETE, 0}, /* 53 */

{"ioctl", lx_ioctl, 0, 3}, /* 54 */

{"fcntl", lx_fcntl, 0, 3}, /* 55 */

{"mpx", NULL, NOSYS_OBSOLETE, 0}, /* 56 */

{"setpgid", lx_setpgid, 0, 2}, /* 57 */

{"ulimit", NULL, NOSYS_OBSOLETE, 0}, /* 58 */

{"olduname", NULL, NOSYS_OBSOLETE, 0}, /* 59 */

{"umask", (int (*)())umask, SYS_PASSTHRU, 1}, /* 60 */

{"chroot", chroot, SYS_PASSTHRU, 1}, /* 61 */

{"ustat", lx_ustat, 0, 2}, /* 62 */

{"dup2", lx_dup2, 0, 2}, /* 63 */

{"getppid", lx_getppid, 0, 0}, /* 64 */

{"getpgrp", lx_getpgrp, 0, 0}, /* 65 */

{"setsid", lx_setsid, 0, 0}, /* 66 */

{"sigaction", lx_sigaction, 0, 3}, /* 67 */

{"sgetmask", NULL, NOSYS_OBSOLETE, 0}, /* 68 */

{"ssetmask", NULL, NOSYS_OBSOLETE, 0}, /* 69 */

{"setreuid16", lx_setreuid16, 0, 2}, /* 70 */

{"setregid16", lx_setregid16, 0, 2}, /* 71 */

{"sigsuspend", lx_sigsuspend, 0, 1}, /* 72 */

{"sigpending", lx_sigpending, 0, 1}, /* 73 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page133 of 153

4
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"sethostname", lx_sethostname, 0, 2}, /* 74 */

{"setrlimit", lx_setrlimit, 0, 2}, /* 75 */

{"getrlimit", lx_oldgetrlimit, 0, 2}, /* 76 */

{"getrusage", lx_getrusage, 0, 2}, /* 77 */

{"gettimeofday", lx_gettimeofday, 0, 2}, /* 78 */

{"settimeofday", lx_settimeofday, 0, 2}, /* 79 */

{"getgroups16", lx_getgroups16, 0, 2}, /* 80 */

{"setgroups16", lx_setgroups16, 0, 2}, /* 81 */

{"select", NULL, NOSYS_OBSOLETE, 0}, /* 82 */

{"symlink", symlink, SYS_PASSTHRU, 2}, /* 83 */

{"oldlstat", NULL, NOSYS_OBSOLETE, 0}, /* 84 */

{"readlink", readlink, SYS_PASSTHRU, 3}, /* 85 */

{"uselib", NULL, NOSYS_KERNEL, 0}, /* 86 */

{"swapon", NULL, NOSYS_KERNEL, 0}, /* 87 */

{"reboot", lx_reboot, 0, 4}, /* 88 */

{"readdir", lx_readdir, 0, 3}, /* 89 */

{"mmap", lx_mmap, 0, 6}, /* 90 */

{"munmap", munmap, SYS_PASSTHRU, 2}, /* 91 */

{"truncate", lx_truncate, 0, 2}, /* 92 */

{"ftruncate", lx_ftruncate, 0, 2}, /* 93 */

{"fchmod", fchmod, SYS_PASSTHRU, 2}, /* 94 */

{"fchown16", lx_fchown16, 0, 3}, /* 95 */

{"getpriority", lx_getpriority, 0, 2}, /* 96 */

{"setpriority", lx_setpriority, 0, 3}, /* 97 */

{"profil", NULL, NOSYS_NO_EQUIV, 0}, /* 98 */

{"statfs", lx_statfs, 0, 2}, /* 99 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page134 of 153

5
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"fstatfs", lx_fstatfs, 0, 2}, /* 100 */

{"ioperm", NULL, NOSYS_NO_EQUIV, 0}, /* 101 */

{"socketcall", lx_socketcall, 0, 2}, /* 102 */

{"syslog", NULL, NOSYS_KERNEL, 0}, /* 103 */

{"setitimer", lx_setitimer, 0, 3}, /* 104 */

{"getitimer", getitimer, SYS_PASSTHRU, 2}, /* 105 */

{"stat", lx_stat, 0, 2}, /* 106 */

{"lstat", lx_lstat, 0, 2}, /* 107 */

{"fstat", lx_fstat, 0, 2}, /* 108 */

{"uname", NULL, NOSYS_OBSOLETE, 0}, /* 109 */

{"oldiopl", NULL, NOSYS_NO_EQUIV, 0}, /* 110 */

{"vhangup", lx_vhangup, 0, 0}, /* 111 */

{"idle", NULL, NOSYS_NO_EQUIV, 0}, /* 112 */

{"vm86old", NULL, NOSYS_OBSOLETE, 0}, /* 113 */

{"wait4", lx_wait4, 0, 4}, /* 114 */

{"swapoff", NULL, NOSYS_KERNEL, 0}, /* 115 */

{"sysinfo", lx_sysinfo, 0, 1}, /* 116 */

{"ipc", lx_ipc, 0, 5}, /* 117 */

{"fsync", lx_fsync, 0, 1}, /* 118 */

{"sigreturn", lx_sigreturn, 0, 1}, /* 119 */

{"clone", lx_clone, 0, 5}, /* 120 */

{"setdomainname", lx_setdomainname, 0, 2}, /* 121 */

{"uname", lx_uname, 0, 1}, /* 122 */

{"modify_ldt", lx_modify_ldt, 0, 3}, /* 123 */

{"adjtimex", lx_adjtimex, 0, 1}, /* 124 */

{"mprotect", lx_mprotect, 0, 3}, /* 125 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page135 of 153

6
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"sigprocmask", lx_sigprocmask, 0, 3}, /* 126 */

{"create_module", NULL, NOSYS_KERNEL, 0}, /* 127 */

{"init_module", NULL, NOSYS_KERNEL, 0}, /* 128 */

{"delete_module", NULL, NOSYS_KERNEL, 0}, /* 129 */

{"get_kernel_syms", NULL, NOSYS_KERNEL, 0}, /* 130 */

{"quotactl", NULL, NOSYS_KERNEL, 0}, /* 131 */

{"getpgid", lx_getpgid, 0, 1}, /* 132 */

{"fchdir", fchdir, SYS_PASSTHRU, 1}, /* 133 */

{"bdflush", NULL, NOSYS_KERNEL, 0}, /* 134 */

{"sysfs", lx_sysfs, 0, 3}, /* 135 */

{"personality", lx_personality, 0, 1}, /* 136 */

{"afs_syscall", NULL, NOSYS_KERNEL, 0}, /* 137 */

{"setfsuid16", lx_setfsuid16, 0, 1}, /* 138 */

{"setfsgid16", lx_setfsgid16, 0, 1}, /* 139 */

{"llseek", lx_llseek, 0, 5}, /* 140 */

{"getdents", getdents, SYS_PASSTHRU, 3}, /* 141 */

{"select", lx_select, 0, 5}, /* 142 */

{"flock", lx_flock, 0, 2}, /* 143 */

{"msync", lx_msync, 0, 3}, /* 144 */

{"readv", lx_readv, 0, 3}, /* 145 */

{"writev", lx_writev, 0, 3}, /* 146 */

{"getsid", lx_getsid, 0, 1}, /* 147 */

{"fdatasync", lx_fdatasync, 0, 1}, /* 148 */

{"sysctl", lx_sysctl, 0, 1}, /* 149 */

{"mlock", lx_mlock, 0, 2}, /* 150 */

{"munlock", lx_munlock, 0, 2}, /* 151 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page136 of 153

7
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"mlockall", lx_mlockall, 0, 1}, /* 152 */

{"munlockall", lx_munlockall, 0, 0}, /* 153 */

{"sched_setparam", lx_sched_setparam, 0, 2}, /* 154 */

{"sched_getparam", lx_sched_getparam, 0, 2}, /* 155 */

{"sched_setscheduler", lx_sched_setscheduler, 0, 3}, /* 156 */

{"sched_getscheduler", lx_sched_getscheduler, 0, 1}, /* 157 */

{"sched_yield", (int (*)())yield, SYS_PASSTHRU, 0}, /* 158 */

{"sched_get_priority_max", lx_sched_get_priority_max, 0, 1}, /* 159

*/

{"sched_get_priority_min", lx_sched_get_priority_min, 0, 1}, /* 160

*/

{"sched_rr_get_interval", lx_sched_rr_get_interval, 0, 2}, /* 161

*/

{"nanosleep", nanosleep, SYS_PASSTHRU, 2}, /* 162 */

{"mremap", NULL, NOSYS_NO_EQUIV, 0}, /* 163 */

{"setresuid16", lx_setresuid16, 0, 3}, /* 164 */

{"getresuid16", lx_getresuid16, 0, 3}, /* 165 */

{"vm86", NULL, NOSYS_NO_EQUIV, 0}, /* 166 */

{"query_module", lx_query_module, NOSYS_KERNEL, 5}, /* 167 */

{"poll", lx_poll, 0, 3}, /* 168 */

{"nfsservctl", NULL, NOSYS_KERNEL, 0}, /* 169 */

{"setresgid16", lx_setresgid16, 0, 3}, /* 170 */

{"getresgid16", lx_getresgid16, 0, 3}, /* 171 */

{"prctl", NULL, NOSYS_UNDOC, 0}, /* 172 */

{"rt_sigreturn", lx_rt_sigreturn, 0, 0}, /* 173 */

{"rt_sigaction", lx_rt_sigaction, 0, 4}, /* 174 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page137 of 153

8
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"rt_sigprocmask", lx_rt_sigprocmask, 0, 4}, /* 175 */

{"rt_sigpending", lx_rt_sigpending, 0, 2}, /* 176 */

{"rt_sigtimedwait", lx_rt_sigtimedwait, 0, 4}, /* 177 */

{"sigqueueinfo", NULL, NOSYS_UNDOC, 0}, /* 178 */

{"rt_sigsuspend", lx_rt_sigsuspend, 0, 2}, /* 179 */

{"pread64", lx_pread64, 0, 5}, /* 180 */

{"pwrite64", lx_pwrite64, 0, 5}, /* 181 */

{"chown16", lx_chown16, 0, 3}, /* 182 */

{"getcwd", lx_getcwd, 0, 2}, /* 183 */

{"capget", NULL, NOSYS_NO_EQUIV, 0}, /* 184 */

{"capset", NULL, NOSYS_NO_EQUIV, 0}, /* 185 */

{"sigaltstack", lx_sigaltstack, 0, 2}, /* 186 */

{"sendfile", lx_sendfile, 0, 4}, /* 187 */

{"getpmsg", NULL, NOSYS_OBSOLETE, 0}, /* 188 */

{"putpmsg", NULL, NOSYS_OBSOLETE, 0}, /* 189 */

{"vfork", lx_vfork, 0, 0}, /* 190 */

{"getrlimit", lx_getrlimit, 0, 2}, /* 191 */

{"mmap2", lx_mmap2, EBP_HAS_ARG6, 6}, /* 192 */

{"truncate64", lx_truncate64, 0, 3}, /* 193 */

{"ftruncate64", lx_ftruncate64, 0, 3}, /* 194 */

{"stat64", lx_stat64, 0, 2}, /* 195 */

{"lstat64", lx_lstat64, 0, 2}, /* 196 */

{"fstat64", lx_fstat64, 0, 2}, /* 197 */

{"lchown", lchown, SYS_PASSTHRU, 3}, /* 198 */

{"getuid", (int (*)())getuid, SYS_PASSTHRU, 0}, /* 199 */

{"getgid", (int (*)())getgid, SYS_PASSTHRU, 0}, /* 200 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page138 of 153

9
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"geteuid", lx_geteuid, 0, 0}, /* 201 */

{"getegid", lx_getegid, 0, 0}, /* 202 */

{"setreuid", setreuid, SYS_PASSTHRU, 0}, /* 203 */

{"setregid", setregid, SYS_PASSTHRU, 0}, /* 204 */

{"getgroups", getgroups, SYS_PASSTHRU, 2}, /* 205 */

{"setgroups", lx_setgroups, 0, 2}, /* 206 */

{"fchown", lx_fchown, 0, 3}, /* 207 */

{"setresuid", lx_setresuid, 0, 3}, /* 208 */

{"getresuid", lx_getresuid, 0, 3}, /* 209 */

{"setresgid", lx_setresgid, 0, 3}, /* 210 */

{"getresgid", lx_getresgid, 0, 3}, /* 211 */

{"chown", lx_chown, 0, 3}, /* 212 */

{"setuid", setuid, SYS_PASSTHRU, 1}, /* 213 */

{"setgid", setgid, SYS_PASSTHRU, 1}, /* 214 */

{"setfsuid", lx_setfsuid, 0, 1}, /* 215 */

{"setfsgid", lx_setfsgid, 0, 1}, /* 216 */

{"pivot_root", NULL, NOSYS_KERNEL, 0}, /* 217 */

{"mincore", mincore, SYS_PASSTHRU, 3}, /* 218 */

{"madvise", lx_madvise, 0, 3}, /* 219 */

{"getdents64", lx_getdents64, 0, 3}, /* 220 */

{"fcntl64", lx_fcntl64, 0, 3}, /* 221 */

{"tux", NULL, NOSYS_NO_EQUIV, 0}, /* 222 */

{"security", NULL, NOSYS_NO_EQUIV, 0}, /* 223 */

{"gettid", lx_gettid, 0, 0}, /* 224 */

{"readahead", NULL, NOSYS_NO_EQUIV, 0}, /* 225 */

{"setxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 226 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page139 of 153

10
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"lsetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 227 */

{"fsetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 228 */

{"getxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 229 */

{"lgetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 230 */

{"fgetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 231 */

{"listxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 232 */

{"llistxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 233 */

{"flistxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 234 */

{"removexattr", NULL, NOSYS_NO_EQUIV, 0}, /* 235 */

{"lremovexattr", NULL, NOSYS_NO_EQUIV, 0}, /* 236 */

{"fremovexattr", NULL, NOSYS_NO_EQUIV, 0}, /* 237 */

{"tkill", lx_tkill, 0, 2}, /* 238 */

{"sendfile64", lx_sendfile64, 0, 4}, /* 239 */

{"futex", lx_futex, EBP_HAS_ARG6, 6}, /* 240 */

{"sched_setaffinity", lx_sched_setaffinity, 0, 3}, /* 241 */

{"sched_getaffinity", lx_sched_getaffinity, 0, 3}, /* 242 */

{"set_thread_area", lx_set_thread_area, 0, 1}, /* 243 */

{"get_thread_area", lx_get_thread_area, 0, 1}, /* 244 */

{"io_setup", NULL, NOSYS_NO_EQUIV, 0}, /* 245 */

{"io_destroy", NULL, NOSYS_NO_EQUIV, 0}, /* 246 */

{"io_getevents", NULL, NOSYS_NO_EQUIV, 0}, /* 247 */

{"io_submit", NULL, NOSYS_NO_EQUIV, 0}, /* 248 */

{"io_cancel", NULL, NOSYS_NO_EQUIV, 0}, /* 249 */

{"fadvise64", NULL, NOSYS_UNDOC, 0}, /* 250 */

{"nosys", NULL, 0, 0}, /* 251 */

{"group_exit", lx_group_exit, 0, 1}, /* 252 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page140 of 153

11
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"lookup_dcookie", NULL, NOSYS_NO_EQUIV, 0}, /* 253 */

{"epoll_create", NULL, NOSYS_NO_EQUIV, 0}, /* 254 */

{"epoll_ctl", NULL, NOSYS_NO_EQUIV, 0}, /* 255 */

{"epoll_wait", NULL, NOSYS_NO_EQUIV, 0}, /* 256 */

{"remap_file_pages", NULL, NOSYS_NO_EQUIV, 0}, /* 257 */

{"set_tid_address", lx_set_tid_address, 0, 1}, /* 258 */

{"timer_create", NULL, NOSYS_UNDOC, 0}, /* 259 */

{"timer_settime", NULL, NOSYS_UNDOC, 0}, /* 260 */

{"timer_gettime", NULL, NOSYS_UNDOC, 0}, /* 261 */

{"timer_getoverrun", NULL, NOSYS_UNDOC, 0}, /* 262 */

{"timer_delete", NULL, NOSYS_UNDOC, 0}, /* 263 */

{"clock_settime", lx_clock_settime, 0, 2}, /* 264 */

{"clock_gettime", lx_clock_gettime, 0, 2}, /* 265 */

{"clock_getres", lx_clock_getres, 0, 2}, /* 266 */

{"clock_nanosleep", lx_clock_nanosleep, 0, 4}, /* 267 */

{"statfs64", lx_statfs64, 0, 2}, /* 268 */

{"fstatfs64", lx_fstatfs64, 0, 2}, /* 269 */

{"tgkill", lx_tgkill, 0, 3}, /* 270 */

/* The following system calls only exist in kernel 2.6 and greater */

{"utimes", utimes, SYS_PASSTHRU, 2}, /* 271 */

{"fadvise64_64", NULL, NOSYS_NULL, 0}, /* 272 */

{"vserver", NULL, NOSYS_NULL, 0}, /* 273 */

{"mbind", NULL, NOSYS_NULL, 0}, /* 274 */

{"get_mempolicy", NULL, NOSYS_NULL, 0}, /* 275 */

{"set_mempolicy", NULL, NOSYS_NULL, 0}, /* 276 */

{"mq_open", NULL, NOSYS_NULL, 0}, /* 277 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page141 of 153

12
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"mq_unlink", NULL, NOSYS_NULL, 0}, /* 278 */

{"mq_timedsend", NULL, NOSYS_NULL, 0}, /* 279 *

{"mq_timedreceive", NULL, NOSYS_NULL, 0}, /* 280 */

{"mq_notify", NULL, NOSYS_NULL, 0}, /* 281 */

{"mq_getsetattr", NULL, NOSYS_NULL, 0}, /* 282 */

{"kexec_load", NULL, NOSYS_NULL, 0}, /* 283 */

{"waitid", lx_waitid, 0, 4}, /* 284 */

{"sys_setaltroot", NULL, NOSYS_NULL, 0}, /* 285 */

{"add_key", NULL, NOSYS_NULL, 0}, /* 286 */

{"request_key", NULL, NOSYS_NULL, 0}, /* 287 */

{"keyctl", NULL, NOSYS_NULL, 0}, /* 288 */

{"ioprio_set", NULL, NOSYS_NULL, 0}, /* 289 */

{"ioprio_get", NULL, NOSYS_NULL, 0}, /* 290 */

{"inotify_init", NULL, NOSYS_NULL, 0}, /* 291 */

{"inotify_add_watch", NULL, NOSYS_NULL, 0}, /* 292 */

{"inotify_rm_watch", NULL, NOSYS_NULL, 0}, /* 293 */

{"migrate_pages", NULL, NOSYS_NULL, 0}, /* 294 */

{"openat", lx_openat, 0, 4}, /* 295 */

{"mkdirat", lx_mkdirat, 0, 3}, /* 296 */

{"mknodat", lx_mknodat, 0, 4}, /* 297 */

{"fchownat", lx_fchownat, 0, 5}, /* 298 */

{"futimesat", lx_futimesat, 0, 3}, /* 299 */

{"fstatat64", lx_fstatat64, 0, 4}, /* 300 */

{"unlinkat", lx_unlinkat, 0, 3}, /* 301 */

{"renameat", lx_renameat, 0, 4}, /* 302 */

{"linkat", lx_linkat, 0, 5}, /* 303 */

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page142 of 153

13
OWEN ASTRACHAN OPENING REPORT

CIVIL ACTION NO. CV 10-03561-WHA

{"symlinkat", lx_symlinkat, 0, 3}, /* 304 */

{"readlinkat", lx_readlinkat, 0, 4}, /* 305 */

{"fchmodat", lx_fchmodat, 0, 4}, /* 306 */

{"faccessat", lx_faccessat, 0, 4}, /* 307 */

{"pselect6", NULL, NOSYS_NULL, 0}, /* 308 */

{"ppoll", NULL, NOSYS_NULL, 0}, /* 309 */

{"unshare", NULL, NOSYS_NULL, 0}, /* 310 */

{"set_robust_list", NULL, NOSYS_NULL, 0}, /* 311 */

{"get_robust_list", NULL, NOSYS_NULL, 0}, /* 312 */

{"splice", NULL, NOSYS_NULL, 0}, /* 313 */

{"sync_file_range", NULL, NOSYS_NULL, 0}, /* 314 */

{"tee", NULL, NOSYS_NULL, 0}, /* 315 */

{"vmsplice", NULL, NOSYS_NULL, 0}, /* 316 */

{"move_pages", NULL, NOSYS_NULL, 0}, /* 317 */

};

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page143 of 153

1
OWEN ASTRACHAN OPENING REPORT

Civil Action No. CV 10-03561-WHA

EXHIBIT E: SOURCE CODE FOR SLOCCOUNTER.PY AND

SLOCCOUNTERTOTAL.PY

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page144 of 153

’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’

import os,collections
10

acdict = collections.defaultdict(int)
aperclass = collections.defaultdict(int)
aset = set()
apack = {}

15

jcdict = collections.defaultdict(int)
jperclass = collections.defaultdict(int)
jset = set()

20 jpack = {}

public_ids = [" public class",
 " public abstract class",
 " public interface",

25 " protected class",
 " protected",
 " public"]

def do_one(onepath,cset,cpack):
30 if not onepath.endswith(" .java"):

 return True
 if onepath.endswith(" package−info.java"):
 return True
 f = open(onepath)

35
 pcount = 0
 first = True
 public = False
 for line in f:

40
 line = line.strip()

 if first and line.startswith(" public class "):
 #print "class",onepath,line

45 base = os.path.basename(onepath)
 cset.add(base)
 cpack[base] = onepath
 break

50 return public

def topcount(basepath,packname,cset,cpack):
 parts = packname.split(" .")
 pathize = ’ /’.join(parts)

55 packagepath = os.path.join(basepath,pathize)
 for top in os.listdir(packagepath):
 top_path = os.path.join(packagepath,top)
 if os.path.isdir(top_path):
 #print "*** %s is a directory in %s" % (top,packagepath)

60 pass
 else:
 c = do_one(top_path,cset,cpack)
 if not c:
 #print "no public",top_path,top

65 pass
 #print "%s has %d public" % (top_path,c)
def revs(s):
 return s[::−1]

70 def analyze():

 jpath = " /Users/ola/expert/google/ESOURCE/j2se/src/share/classes"
 apath = " /Users/ola/expert/google/SOURCE/libcore/luni/src/main/java"

Jul 28, 11 15:57 Page 1/2Allclasses.py
 packages = [" java.awt.font",

75 " java.beans",
 " java.io",
 " java.lang",
 " java.lang.annotation",
 " java.lang.ref",

80 " java.lang.reflect",
 " java.math",
 " java.net",
 " java.nio",
 " java.nio.channels",

85 " java.nio.channels.spi",
 " java.nio.charset",
 " java.nio.charset.spi",
 " java.security",
 " java.security.acl",

90 " java.security.cert",
 " java.security.interfaces",
 " java.security.spec",
 " java.sql",
 " java.text",

95 " java.util",
 #"java.util.concurrent",
 #"java.util.concurrrent.atomic",
 #"java.util.concurrent.locks",
 " java.util.jar",

100 " java.util.logging",
 " java.util.prefs",
 " java.util.regex",
 " java.util.zip",
 " javax.crypto",

105 " javax.crypto.interfaces",
 " javax.crypto.spec",
 " javax.net",
 " javax.net.ssl",
 " javax.security.auth",

110 " javax.security.auth.callback",
 " javax.security.auth.login",
 " javax.security.auth.x500",
 " javax.security.cert",
 " javax.sql",

115 " javax.xml",
 " javax.xml.datatype",
 " javax.xml.namespace",
 " javax.xml.parsers",
 " javax.xml.transform",

120 " javax.xml.transform.dom",
 " javax.xml.transform.sax",
 " javax.xml.transform.stream",
 " javax.xml.validation",
 " javax.xml.xpath"

125]

 for pack in packages:
 topcount(apath,pack,aset,apack)
 topcount(jpath,pack,jset,jpack)

130

 names = sorted(jset,key=revs)
 for i,name in enumerate(names):
 print " %d\t%s" % (i,name)

135
 for i,name in enumerate(names):
 print " %d %s" % (i,jpack[name])

140 if __name__ == " __main__":
 analyze()

Jul 28, 11 15:57 Page 2/2Allclasses.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 1/9Allclasses.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page145 of 153

’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’

import os,collections
10

acdict = collections.defaultdict(int)
aperclass = collections.defaultdict(int)
aset = set()

15 jcdict = collections.defaultdict(int)
jperclass = collections.defaultdict(int)
jset = set()

20 public_ids = [" public class",
 " public abstract class",
 " public interface",
 " protected class",
 " protected",

25 " public"]

def do_one(onepath,cdict,perclass,cset):
 if not onepath.endswith(" .java"):
 return True

30 if onepath.endswith(" package−info.java"):
 return True
 f = open(onepath)
 pcount = 0
 first = True

35 public = False
 for line in f:

 line = line.strip()

40 if first and line.startswith(" class "):
 #print "class",onepath,line
 base = os.path.basename(onepath)
 cset.add(base)

45 pfound = False
 for pub in public_ids:

 if line.startswith(pub):
 if first:

50 first = False
 if line.find(" public") >= 0 or line.find(" protected") >= 0:
 public = True
 else:
 print " big problem",onepath,pub,line

55 if line.find(" protected") < 0:
 pcount += 1
 cdict[pub] += 1
 pfound = True
 if line.find(" class") >= 0 and line.find(" extends") >= 0:

60 cdict[" extends"] += 1
 elif line.find(" interface") >= 0 and line.find(" extends") >= 0:
 cdict[" extends"] += 1
 break

65 f.close()
 perclass[pcount] += 1
 if pcount == 0:
 #print "%s = %d" % (onepath,pcount)
 pass

70 return public

def topcount(basepath,packname,cdict,perclass,cset):
 parts = packname.split(" .")

Jul 28, 11 15:57 Page 1/3APIanalyzer.py
 pathize = ’ /’.join(parts)

75 packagepath = os.path.join(basepath,pathize)
 for top in os.listdir(packagepath):
 top_path = os.path.join(packagepath,top)
 if os.path.isdir(top_path):
 #print "*** %s is a directory in %s" % (top,packagepath)

80 pass
 else:
 c = do_one(top_path,cdict,perclass,cset)
 if not c:
 #print "no public",top_path,top

85 pass
 #print "%s has %d public" % (top_path,c)

def report(cdict,perclass):
 ctotal = 0

90 for key in cdict:
 if key.find(" public") < 0:
 continue
 print " %s occurrences = %d" % (key,cdict[key])
 if key.find(" class") >= 0 or key.find(" interface") >= 0:

95 ctotal += cdict[key]
 print " −−−−"
 print " public class/interface total = %d" % (ctotal)

 ctotal = 0

100 for key in cdict:
 if key.find(" protected") < 0:
 continue
 print " %s occurrences = %d" % (key,cdict[key])
 if key.find(" class") >= 0 or key.find(" interface") >= 0:

105 ctotal += cdict[key]
 print " −−−−"
 print " protected class/interface total = %d" % (ctotal)

 print " per class method counts"

110 print " # methods\t#classes"
 total = 0
 levels = collections.defaultdict(int)
 levlist = [0,1,6,11,16,21,51,101,100001]
 for method_count in sorted(perclass.keys()):

115 print " %d\t%d" % (method_count,perclass[method_count])
 total += method_count*perclass[method_count]
 for lev in xrange(1,len(levlist)):
 if levlist[lev−1] <= method_count < levlist[lev]:
 levels[lev] += perclass[method_count]

120 print " −−−−−"
 print " total methods = %d" % (total)
 print " \n−−−summary−−"
 total = 0
 for lev in xrange(1,len(levlist)):

125 print " perclass from %d to %d = %d" % (levlist[lev−1],levlist[lev]−1,levels[le
v])
 total += levels[lev]
 print " total = %d" % (total)

def analyze():
130

 apath = " /Users/ola/expert/google/SOURCE/libcore/luni/src/main/java"
 javapath = " /Users/ola/expert/google/ESOURCE/j2se/src/share/classes"
 gnupath = " /Users/ola/expert/google/source−gnu/classpath−0.98"

135 packages = [" java.awt.font",
 " java.beans",
 " java.io",
 " java.lang",
 " java.lang.annotation",

140 " java.lang.ref",
 " java.lang.reflect",
 " java.math",
 " java.net",
 " java.nio",

145 " java.nio.channels",

Jul 28, 11 15:57 Page 2/3APIanalyzer.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 2/9APIanalyzer.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page146 of 153

 " java.nio.channels.spi",
 " java.nio.charset",
 " java.nio.charset.spi",
 " java.security",

150 " java.security.acl",
 " java.security.cert",
 " java.security.interfaces",
 " java.security.spec",
 " java.sql",

155 " java.text",
 " java.util",
 #"java.util.concurrent",
 #"java.util.concurrrent.atomic",
 #"java.util.concurrent.locks",

160 " java.util.jar",
 " java.util.logging",
 " java.util.prefs",
 " java.util.regex",
 " java.util.zip",

165 " javax.crypto",
 " javax.crypto.interfaces",
 " javax.crypto.spec",
 " javax.net",
 " javax.net.ssl",

170 " javax.security.auth",
 " javax.security.auth.callback",
 " javax.security.auth.login",
 " javax.security.auth.x500",
 " javax.security.cert",

175 " javax.sql",
 " javax.xml",
 " javax.xml.datatype",
 " javax.xml.namespace",
 " javax.xml.parsers",

180 " javax.xml.transform",
 " javax.xml.transform.dom",
 " javax.xml.transform.sax",
 " javax.xml.transform.stream",
 " javax.xml.validation",

185 " javax.xml.xpath"
]

 c = 0
 for pack in packages:

190 topcount(apath,pack,acdict,aperclass,aset)
 c += 1
 topcount(javapath,pack,jcdict,jperclass,jset)
 #topcount(gnupath,pack,acdict,aperclass,aset)

195 print " %d packages analyzed" % (len(packages))
 print " \nJava Analysis"
 report(jcdict,jperclass)
 print " \nAndroid Analysis"
 report(acdict,aperclass)

200 print " \n−−−−−"

 print " common package/private"
 inter = jset&aset
 for name in inter:

205 print name

 print " \nAndroid\n−−−−−−"
 for name in aset:
 print name

210 print " \nJava\n−−−−−−"
 for name in jset:
 print name

215

if __name__ == " __main__":
 analyze()

Jul 28, 11 15:57 Page 3/3APIanalyzer.py
’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’

import os,collections
10

acdict = collections.defaultdict(int)
aperclass = collections.defaultdict(int)
aset = set()
apack = {}

15

jcdict = collections.defaultdict(int)
jperclass = collections.defaultdict(int)
jset = set()

20 jpack = {}

public_ids = [" public class",
 " public abstract class",
 " public interface"]

25

logger = open(" classlog"," w")

def is_class(line):
30

 for pub in public_ids:
 if line.startswith(pub):
 return True

35 pin = line.find(" public")
 cin = line.find(" class")
 if pin != −1 and cin != −1 and pin < cin:
 return True
 return False

40

def do_one(onepath,cset,cpack):
 if not onepath.endswith(" .java"):
 return True
 if onepath.endswith(" package−info.java"):

45 return True
 f = open(onepath)

 pcount = 0
 first = True

50 public = False
 for line in f:

 line = line.strip()

55 if first and is_class(line):
 #print "class",onepath,line
 base = os.path.basename(onepath)
 cset.add(onepath)
 cpack[base] = onepath

60 public = True
 break

 return public

65

def topcount(basepath,cset,cpack):
 ’’’
 counting public classes and interfaces, use basepath as /java or /javax

70 ’’’

 for top in os.listdir(basepath):
 top_path = os.path.join(basepath,top)

Jul 28, 11 15:57 Page 1/2ClassCounter.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 3/9APIanalyzer.py, ClassCounter.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page147 of 153

 if os.path.isdir(top_path):
75 #print "*** %s is a directory in %s" % (top,packagepath)

 print " recurse on ",top_path
 logger.write(" recurse on "+top_path+" \n")
 topcount(top_path,cset,cpack)

80 else:
 c = do_one(top_path,cset,cpack)
 if not c:
 #print "no public",top_path,top
 pass

85 #print "%s has %d public" % (top_path,c)
def revs(s):
 return s[::−1]

def analyze():
90

 jpath = " /Users/ola/expert/google/ESOURCE/j2se/src/share/classes"
 apath = " /Users/ola/expert/google/SOURCE/libcore/luni/src/main/java"

 for toplevel in [""]:

95 topcount(jpath+toplevel,jset,jpack)

 names = sorted(jset)
 for i,name in enumerate(names):

100 logger.write(str(i)+" \t"+name+" \n")
 print " %d\t%s" % (i,name)

 logger.close()

105 if __name__ == " __main__":
 analyze()

Jul 28, 11 15:57 Page 2/2ClassCounter.py
’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’

import os,collections
10

acdict = collections.defaultdict(int)
aperclass = collections.defaultdict(int)
aset = set()
apack = {}

15

jcdict = collections.defaultdict(int)
jperclass = collections.defaultdict(int)
jset = set()

20 jpack = {}

logger = open(" packagelog"," w")

25

def topcount(basepath,cset,cpack):
 ’’’
 looking for package names, find .java file, it’s a package

30 ’’’

 jfound = False
 for top in os.listdir(basepath):
 top_path = os.path.join(basepath,top)

35 if os.path.isdir(top_path):
 #print "*** %s is a directory in %s" % (top,packagepath)

 #print "recurse on ",top_path
 #logger.write("recurse on "+top_path+"\n")

40 topcount(top_path,cset,cpack)
 else:
 if top_path.endswith(".java"):
 jfound = True

45 if jfound:
 #print ".java found in ",top_path
 cset.add(basepath)

50 def analyze():

 jpath = "/Users/ola/expert/google/ESOURCE/j2se/src/share/classes"
 apath = "/Users/ola/expert/google/SOURCE/" #/libcore/luni/src/main/java"

55 packdirs = ["frameworks/base/core/java", "libcore/luni/src/main"]

 for dir in packdirs:
 #topcount(jpath,jset,jpack)
 topcount(apath+dir,aset,apack)

60 #topcount(apath,pack,aset)

 names = sorted(aset)
 for i,name in enumerate(names):

65 logger.write(str(i)+"\t"+name+"\n")
 print "%d\t%s" % (i,name)

 logger.close()

70 if __name__ == "__main__":
 analyze()

Jul 28, 11 15:57 Page 1/1PackageCounter.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 4/9ClassCounter.py, PackageCounter.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page148 of 153

’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’
import os,collections

10 acdict = collections.defaultdict(int)
aperclass = collections.defaultdict(int)
aprivdict = {}
aset = set()
amethnames = []

15

jcdict = collections.defaultdict(int)
jperclass = collections.defaultdict(int)
jprivdict = {}
jset = set()

20 jmethnames = []

gcdict = collections.defaultdict(int)
gperclass = collections.defaultdict(int)
gprivdict = {}

25 gset = set()
gmethnames = []

afunclist = []
30 jfunclist = []

gfunclist = []

methnames = []

35 public_ids = [" public class",
 " public abstract class",
 " public interface",
 " protected class",
 " protected",

40 " public"]

def is_func(line):
 if " new " in line:
 return False

45 parts = line.split()
 if line.startswith(" public") and line.find(")") >= 0 and line.find(" (") >= 0:
 return True
 if line.startswith(" private") and line.find(")") >= 0 and line.find(" (") >= 0:
 return True

50 return False

def getClass(path):
 ’’’

55 path ends with .java, return class name preceding .java including preceding .
 e.g., for java/lang/Arrays, return .Arrays
 ’’’
 nm = path[:−5]
 index = nm.rfind(" /")

60 return " ."+nm[index+1:]

def do_one(packname,onepath,cdict,perclass,cset,funclist,privdict,methnames):

65 if not onepath.endswith(" .java"):
 return True
 if onepath.endswith(" package−info.java"):
 return True
 f = open(onepath)

70
 class_name = getClass(onepath)

 pcount = 0

Jul 28, 11 15:57 Page 1/6PublicPrivateAnalyzer.py
 first = True

75 public = False
 pubf = 0
 privf = 0
 for line in f:

80 line = line.strip()

 if is_func(line):
 methnames.append(line)
 if line.startswith(" public"):

85 pubf += 1
 else:
 privf += 1
 nm = packname+class_name
 if not nm in privdict:

90 privdict[nm] = []
 privdict[nm].append(line)

 if first and line.startswith(" class "):
 #print "class",onepath,line

95 base = os.path.basename(onepath)
 cset.add(base)

 pfound = False
 for pub in public_ids:

100
 if line.startswith(pub):
 if first:
 first = False
 if line.find(" public") >= 0 or line.find(" protected") >= 0:

105 public = True
 else:
 print " big problem",onepath,pub,line
 if line.find(" protected") < 0:
 pcount += 1

110 cdict[pub] += 1
 pfound = True
 if line.find(" class") >= 0 and line.find(" extends") >= 0:
 cdict[" extends"] += 1
 elif line.find(" interface") >= 0 and line.find(" extends") >= 0:

115 cdict[" extends"] += 1
 break

 f.close()

120 perclass[pcount] += 1
 if pcount == 0:
 #print "%s = %d" % (onepath,pcount)
 pass

125 funclist.append((pubf,privf))
 return public

def topcount(basepath,packname,cdict,perclass,cset,funclist,privdict,methnames):
 parts = packname.split(" .")

130 pathize = ’ /’.join(parts)
 packagepath = os.path.join(basepath,pathize)
 for top in os.listdir(packagepath):
 top_path = os.path.join(packagepath,top)
 if os.path.isdir(top_path):

135 #print "*** %s is a directory in %s" % (top,packagepath)
 pass
 else:
 c = do_one(packname,top_path,cdict,perclass,cset,funclist,privdict,m
ethnames)
 if not c:

140 #print "no public",top_path,top
 pass
 #print "%s has %d public" % (top_path,c)

def func_stats(coll):
145 low = 0

Jul 28, 11 15:57 Page 2/6PublicPrivateAnalyzer.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 5/9PublicPrivateAnalyzer.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page149 of 153

 word_total = 0
 wt_count = 0
 nonlow = 0
 getter = 0

150 setter = 0
 req = 0

 obj_names = [" toString", " hashCode", " notifyAll ", " getClass"]

155 for nm in coll:
 if nm.islower():
 low += 1
 #print "\t lower",nm
 else:

160 wc = 0
 for i,ch in enumerate(nm):
 if ch.isupper() and i > 0 and nm[i−1].islower():
 wc += 1

165 wc += 1
 #word_total += wc
 nonlow += 1

 if nm.startswith(" get"):

170 getter += 1
 elif nm.startswith(" set"):
 setter += 1
 elif nm in obj_names:
 req += 1

175 else:
 word_total += wc
 wt_count += 1

 print " total = %d, one = %d more = %d\n" % (nonlow+low,low,nonlow)

180 print " perc = %f avg = %f\n" % (1.0*low/(low+nonlow),1.0*word_total/wt_count)
 print " non simple = %d\n" % (wt_count)

 print " getter = %d, setter = %d, req = %d, total = %d\n" % (getter,setter,req,req+getter+se
tter)

185 def funcalyze(methnames):
 all_names = set()
 names = []
 for meth in methnames:
 if meth.startswith(" public"):

190 nameEnd = meth.find(" (")
 if nameEnd == −1:
 print " error on ",meth
 else:
 name = meth[:nameEnd]

195 space = name.rfind(" ")
 mname = name[space+1:]
 all_names.add(mname)
 names.append(mname)

200 print " total = %d, unique = %d\n" % (len(names), len(all_names))
 print " unique"
 func_stats(all_names)
 print " total"
 func_stats(names)

205
 meth_counts = [(names.count(nm),nm) for nm in all_names]
 smc = sorted(meth_counts, reverse=True)
 print " top func occurrences"
 for pair in smc[:20]:

210 print pair

 return all_names

215

def report(cdict,perclass,funclist,privdict,methnames):

Jul 28, 11 15:57 Page 3/6PublicPrivateAnalyzer.py

 uset = funcalyze(methnames)

220

 ctotal = 0
 for key in cdict:
 if key.find(" public") < 0:

225 continue
 print " %s occurrences = %d" % (key,cdict[key])
 if key.find(" class") >= 0 or key.find(" interface") >= 0:
 ctotal += cdict[key]
 print " −−−−"

230 print " public class/interface total = %d" % (ctotal)

 ctotal = 0
 for key in cdict:
 if key.find(" protected") < 0:

235 continue
 print " %s occurrences = %d" % (key,cdict[key])
 if key.find(" class") >= 0 or key.find(" interface") >= 0:
 ctotal += cdict[key]
 print " −−−−"

240 print " protected class/interface total = %d" % (ctotal)

 print " per class method counts"
 print " # methods\t#classes"
 total = 0

245 levels = collections.defaultdict(int)
 levlist = [0,1,6,11,16,21,51,101,100001]
 for method_count in sorted(perclass.keys()):
 print " %d\t%d" % (method_count,perclass[method_count])
 total += method_count*perclass[method_count]

250 for lev in xrange(1,len(levlist)):
 if levlist[lev−1] <= method_count < levlist[lev]:
 levels[lev] += perclass[method_count]
 print " −−−−−"
 print " total methods = %d" % (total)

255 print " \n−−−summary−−"
 total = 0
 for lev in xrange(1,len(levlist)):
 print " perclass from %d to %d = %d" % (levlist[lev−1],levlist[lev]−1,levels[le
v])
 total += levels[lev]

260 print " total = %d" % (total)

 print " size of funclist = %d" % (len(funclist))
 total = 0
 totalMeths = 0

265 totalPriv = 0
 for x in funclist:
 totalMeths += x[0] + x[1]
 totalPriv += x[1]
 if x[0] != 0 or x[1] != 0:

270 total += 100.0*x[0]/(x[1]+x[0])
 print " average = %f" % (total/len(funclist))
 print " total meths = %d" % (totalMeths)
 print " total private = %d" % (totalPriv)
 return uset

275

def analyze():

 apath = " /Users/ola/expert/google/SOURCE/libcore/luni/src/main/java"
 javapath = " /Users/ola/expert/google/ESOURCE/j2se/src/share/classes"

280 gnupath = " /Users/ola/expert/google/source−gnu/classpath−0.98"

 packages = [" java.awt.font",
 " java.beans",
 " java.io",

285 " java.lang",
 " java.lang.annotation",
 " java.lang.ref",
 " java.lang.reflect",
 " java.math",

Jul 28, 11 15:57 Page 4/6PublicPrivateAnalyzer.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 6/9PublicPrivateAnalyzer.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page150 of 153

290 " java.net",
 " java.nio",
 " java.nio.channels",
 " java.nio.channels.spi",
 " java.nio.charset",

295 " java.nio.charset.spi",
 " java.security",
 " java.security.acl",
 " java.security.cert",
 " java.security.interfaces",

300 " java.security.spec",
 " java.sql",
 " java.text",
 " java.util",
 #"java.util.concurrent",

305 #"java.util.concurrrent.atomic",
 #"java.util.concurrent.locks",
 " java.util.jar",
 " java.util.logging",
 " java.util.prefs",

310 " java.util.regex",
 " java.util.zip",
 " javax.crypto",
 " javax.crypto.interfaces",
 " javax.crypto.spec",

315 " javax.net",
 " javax.net.ssl",
 " javax.security.auth",
 " javax.security.auth.callback",
 " javax.security.auth.login",

320 " javax.security.auth.x500",
 " javax.security.cert",
 " javax.sql",
 " javax.xml",
 " javax.xml.datatype",

325 " javax.xml.namespace",
 " javax.xml.parsers",
 " javax.xml.transform",
 " javax.xml.transform.dom",
 " javax.xml.transform.sax",

330 " javax.xml.transform.stream",
 " javax.xml.validation",
 " javax.xml.xpath"
]

335 for pack in packages:
 topcount(javapath,pack,jcdict,jperclass,jset,jfunclist,jprivdict,jmethna
mes)
 topcount(apath,pack,acdict,aperclass,aset,afunclist,aprivdict,amethnames
)
 topcount(gnupath,pack,gcdict,gperclass,gset,gfunclist,gprivdict,gmethnam
es)

340 print " %d packages analyzed" % (len(packages))
 print " \nJava Analysis"
 juset = report(jcdict,jperclass,jfunclist,jprivdict,jmethnames)
 print " \nAndroid Analysis"
 auset = report(acdict,aperclass,afunclist,aprivdict,amethnames)

345 print " \nGnuClasspath Analysis"
 report(gcdict,gperclass,gfunclist,gprivdict,gmethnames)
 print " \n−−−−−"

 jmset = juset

350 amset = auset
 inter = jmset&amset
 aonly = amset−jmset
 jonly = jmset−amset
 print " android only count = ",len(aonly),len(amset)

355 print " java only count = ",len(jonly),len(jmset)
 print " android only"
 for i,n in enumerate(sorted(aonly)):
 print i,n
 print " java only"

Jul 28, 11 15:57 Page 5/6PublicPrivateAnalyzer.py
360 for i,n in enumerate(sorted(jonly)):

 print i,n

 privlog = open(" privatelog"," w")

365 for pack in aprivdict:
 if pack in jprivdict:
 line = " package class private {0!s}\n".format(pack)
 print " package class private %s" % (pack)
 privlog.write(line)

370 for priv in aprivdict[pack]:
 line = " \tAndroid {0!s}\n".format(priv)
 privlog.write(line)
 #print "\tAndroid %s" % (priv)
 if priv in jprivdict[pack]:

375 privlog.write(" \t\talso in Java\n")
 #print "\t\talso in Java"
 for priv in jprivdict[pack]:
 if not priv in aprivdict[pack]:
 privlog.write(" \tJava "+priv+" \n")

380 #print "\tJava %s" % (priv)
 privlog.close()

385

print "common package/private"
inter = jset&aset
for name in inter:

390 # print name
#
print "\nAndroid\n−−−−−−"
for name in aset:
print name

395 # print "\nJava\n−−−−−−"
for name in jset:
print name

400

if __name__ == " __main__":
 analyze()

Jul 28, 11 15:57 Page 6/6PublicPrivateAnalyzer.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 7/9PublicPrivateAnalyzer.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page151 of 153

’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’
import os,collections

10

def do_one(packname,onepath):
 ’’’
 return number of lines in onepath if a .java file
 ’’’

15
 if not onepath.endswith(" .java"):
 return 0
 if onepath.endswith(" package−info.java"):
 return 0

20
 f = open(onepath)

 lcount = 0
 for line in f:

25 lcount += 1

 f.close()
 return lcount

30 def topcount(basepath,packname):
 parts = packname.split(" .")
 pathize = ’ /’.join(parts)
 packagepath = os.path.join(basepath,pathize)
 total = 0

35 ftot = 0
 for top in os.listdir(packagepath):
 top_path = os.path.join(packagepath,top)
 if os.path.isdir(top_path):
 #print "*** %s is a directory in %s" % (top,packagepath)

40 pass
 else:
 c = do_one(packname,top_path)
 if c != 0:
 ftot += 1

45 total += c
 return (total,ftot)

def analyze48():

50 apath = " /Users/ola/expert/google/SOURCE/libcore/luni/src/main/java"
 javapath = " /Users/ola/expert/google/ESOURCE/j2se/src/share/classes"
 gnupath = " /Users/ola/expert/google/source−gnu/classpath−0.98"

 packages = [" java.awt.font",

55 " java.beans",
 " java.io",
 " java.lang",
 " java.lang.annotation",
 " java.lang.ref",

60 " java.lang.reflect",
 " java.math",
 " java.net",
 " java.nio",
 " java.nio.channels",

65 " java.nio.channels.spi",
 " java.nio.charset",
 " java.nio.charset.spi",
 " java.security",
 " java.security.acl",

70 " java.security.cert",
 " java.security.interfaces",
 " java.security.spec",
 " java.sql",

Jul 28, 11 15:57 Page 1/2SlocCounter.py
 " java.text",

75 " java.util",
 #"java.util.concurrent",
 #"java.util.concurrrent.atomic",
 #"java.util.concurrent.locks",
 " java.util.jar",

80 " java.util.logging",
 " java.util.prefs",
 " java.util.regex",
 " java.util.zip",
 " javax.crypto",

85 " javax.crypto.interfaces",
 " javax.crypto.spec",
 " javax.net",
 " javax.net.ssl",
 " javax.security.auth",

90 " javax.security.auth.callback",
 " javax.security.auth.login",
 " javax.security.auth.x500",
 " javax.security.cert",
 " javax.sql",

95 " javax.xml",
 " javax.xml.datatype",
 " javax.xml.namespace",
 " javax.xml.parsers",
 " javax.xml.transform",

100 " javax.xml.transform.dom",
 " javax.xml.transform.sax",
 " javax.xml.transform.stream",
 " javax.xml.validation",
 " javax.xml.xpath"

105]

 jpair = [0,0]
 apair = [0,0]
 gpair = [0,0]

110 for pack in packages:
 j = topcount(javapath,pack)
 a = topcount(apath,pack)
 g = topcount(gnupath,pack)
 jpair[0] += j[0]

115 jpair[1] += j[1]
 apair[0] += a[0]
 apair[1] += a[1]
 gpair[0] += g[0]
 gpair[1] += g[1]

120

 print " Java = %d %d \nAndroid = %d %d\nGnu = %d %d\n" % (jpair[0],jpair[1],apair[0],a
pair[1],gpair[0],gpair[1])

125

if __name__ == " __main__":
 analyze48()

Jul 28, 11 15:57 Page 2/2SlocCounter.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 8/9SlocCounter.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page152 of 153

’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’
import os,collections

10 #global vars aren’t used as global, but passed as parameters
#in different calls

#android vars

15 acdict = collections.defaultdict(int)
aperclass = collections.defaultdict(int)
aset = set()
apack = {}

20

#java vars

jcdict = collections.defaultdict(int)
jperclass = collections.defaultdict(int)

25 jset = set()
jpack = {}

logger = open(" sloclog"," w")

30 idents = [" AclEntryImpl.java",
 " AclImpl.java",
 " GroupImpl.java",
 " OwnerImpl.java",
 " PermissionImpl.java",

35 " PrincipleImpl.java",
 " AclEnumerator.java",
 " PolicyNodeImpl.java",
 " CodeSourceTest.java",
 " CollectionCertStoreParametersTest.java",

40 " TimSort.java",
 " ComparableTimSort.java"]

def do_one(onepath,cset,cpack):
45

 if onepath.endswith(" package−info.java"):
 return 0

 endings = [" .java", " .h", " .c", " .cpp"]

50 ok = False
 for e in endings:
 if onepath.endswith(e):
 ok = True
 if not ok:

55 return 0

 # for test files, uncomment below, find files with /test/ in path
dex = onepath.rfind("/")
if dex == −1:

60 # print "trouble on ", onepath
base = onepath[:dex]
lst = base[base.rfind("/")+1:]
if lst != "test":
return 0

65 # print onepath

 # for 12 files at issue in idents uncomment code
ok = False

70 # for ids in idents:
if onepath.endswith(ids):
ok = True
if not ok:

Jul 28, 11 15:57 Page 1/2SlocCounterTotal.py
return 0

75 #
print onepath

 f = open(onepath)
 pcount = 0

80 for line in f:

 pcount += 1

85 #print pcount,onepath
 return pcount

90 def topcount(basepath,cset,cpack):
 ’’’
 traverse directory structure looking for files and data via do_one
 ’’’

95 fcount = 0
 lcount = 0

 for top in os.listdir(basepath):

100 top_path = os.path.join(basepath,top)
 if os.path.isdir(top_path):
 #print "*** %s is a directory in %s" % (top,packagepath)

 #print "recurse on ",top_path

105 #logger.write("recurse on "+top_path+"\n")
 res = topcount(top_path,cset,cpack)
 fcount += res[0]
 lcount += res[1]
 else:

110 c = do_one(top_path,cset,cpack)
 if c != 0:
 lcount += c
 fcount += 1

115 return (fcount,lcount)

def analyze():

120 jpath = " /Users/ola/expert/google/ESOURCE/j2se/src/share/classes"
 apath = " /Users/ola/expert/google/SOURCE/"

 #dirs = ["libcore", "frameworks/base/core"] #/luni/src/main/java"]
 dirs = [""]

125 lcount = 0
 fcount = 0
 for dir in dirs:
 c = topcount(apath+dir,jset,jpack)
 fcount += c[0]

130 lcount += c[1]

 print " files = %d, lines = %d\n" % (fcount,lcount)

if __name__ == " __main__":
135 analyze()

Jul 28, 11 15:57 Page 2/2SlocCounterTotal.py

Printed by Owen L. Astrachan

Thursday July 28, 2011 9/9SlocCounterTotal.py

Case3:10-cv-03561-WHA Document262-1 Filed08/01/11 Page153 of 153

