

EXHIBIT D

Case3:10-cv-03561-WHA Document577-5 Filed10/28/11 Page1 of 7

pa-1475723

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

 Plaintiff,

vs.

GOOGLE INC.

 Defendants.

Case No. 3:10‐cv‐03561‐WHA

EXPERT REPORT OF DR. BENJAMIN F. GOLDBERG

REGARDING VALIDITY OF PATENTS-IN-SUIT

SUBMITTED ON BEHALF OF PLAINTIFF
ORACLE AMERICA, INC.

Case3:10-cv-03561-WHA Document577-5 Filed10/28/11 Page2 of 7

pa-1475723 127

execute the indicated action. It is inefficient, however, for interpreters to resolve the same

symbolic references repeatedly. As James Gosling, the inventor of the ’104 patent, explained,

“each time an instruction comprising a symbolic reference is interpreted, execution is slowed

significantly.” (’104, 2:13-15.) Accordingly, there was a long-felt need to increase the speed at

which interpreters executed code containing symbolic references.

421. The ’104 patent satisfied this need by designing an interpreter that operated on

intermediate form object code and, whenever it resolves a symbolic reference to data, stores the

corresponding numerical (i.e., memory location) reference for later use. (See generally ’104

patent.) When the interpreter described in the patent encounters a subsequent reference to the

data, it simply goes to the corresponding memory location rather than performing another time-

consuming symbolic reference resolution. (See, e.g., id. at 2:35-59.) The ’104 patent thus

eliminated the need to resolve the same symbolic reference twice. (See, e.g., ’104, 2:60-67.) As

summarized in the ’104 patent:

As a result, the ‘compiled’ intermediate form object code of a
program achieves execution performance substantially similar to
that of the traditional compiled object code, and yet it has the
flexibility of not having to be recompiled when the data objects it
deals with are altered like that of the traditional translated code,
since data reference resolution is performed at the first execution
of a generated instruction comprising a data reference. (Id. at
2:60-67.)

422. The ’104 patent reduced the number of symbolic reference resolutions that occur

during run time and thus solved the need to quickly execute intermediate form object code

having symbolic references.

22.. The ’104 Patent Led to Commercial Success

423. I understand that Sun Microsystems and Oracle have implemented the claimed

invention of the ’104 patent in their Java virtual machines. In May 1996, James Gosling and

Henry McGilton co-authored a white paper entitled “The Java Language Environment,” in which

they describe symbolic reference resolution for Java. (James Gosling & Henry McGilton, White

Case3:10-cv-03561-WHA Document577-5 Filed10/28/11 Page3 of 7

pa-1475723 128

Paper, The Java Language Environment (May 1996), available at

http://java.sun.com/docs/white/langenv/.) The white paper documents the core pieces of Java,

including symbolic reference resolution as disclosed in the ’104 patent.

424. The white paper explains, “Java’s memory management model is based on objects

and references to objects.” (Id. at ch.2.1.6 (emphases in original).) Java bytecode references

objects via symbolic references “that are resolved to real memory addresses at run time by the

Java interpreter.” (Id. at ch.6.1.) The chapter on “Interpreted and Dynamic” further explains

symbolic reference resolution:

The Java compiler doesn’t compile references down to numeric
values—instead, it passes symbolic reference information through
to the byte code verifier and the interpreter. The Java interpreter
performs final name resolution once, when classes are being
linked. Once the name is resolved, the reference is rewritten as a
numeric offset, enabling the Java interpreter to run at full speed.
(Id. at ch.5.1.2.)

425. Therefore, Java interpreter only needs to incur “the small expense of a name

lookup the first time any name is encountered” and need not incur the expense the second time

that name is encountered. (Id.) After the interpreter performs the first name lookup, it can

simply reference the “numeric offset.” (Id.) In this way, the ’104 patent allows “the Java

interpreter to run at full speed.” (Id.)

426. Others in the field have recognized Java’s execution performance. (See, e.g.,

Patrick Niemeyer & Joshua Peck, Exploring Java, Ch. 1.2 (O’Reilly 2d Ed. 1997), available at

http://doc.novsu.ac.ru/oreilly/java/exp/index.htm (Although “[i]n general, interpreters are slow . .

. Java is a fast interpreted language.”).) Some consider Java as “a top performer along with C++

in many cases” even though Java requires an extra step of interpretation. (Carmine Mangione,

Performance tests show Java as fast as C++, JavaWorld (Feb. 1, 1998), available at

http://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf.html.)

427. I understand that testimony at trial will show customer demand for devices with

faster execution performance. Because the ’104 patent increases Java interpreters’ execution

Case3:10-cv-03561-WHA Document577-5 Filed10/28/11 Page4 of 7

mdp6
Highlight

mdp6
Highlight

mdp6
Highlight

mdp6
Highlight

pa-1475723 129

speed, it has contributed to Java’s acceptance in the market as a fast interpreted language.

Therefore, I understand that there is a nexus between the claimed invention of the ’104 patent

and Java’s commercial success.

428. Similarly, the ’104 patent helps Android achieve good execution performance. I

have read Professor Mitchell’s Opening Patent Infringement Report, Section VI entitled

“RE38,104 (Reference Resolution)” and understand that the evidence at trial will show that

Android’s Dalvik VM and the dexopt tool that optimizes .dex files both employ the ’104 patent.

Specifically, I understand that the evidence at trial will show that Dalvik VM and dexopt replace

symbolic references with numeric references such as a simple integer v-table offset. Google has

characterized the symbolic reference resolution as an “optimization” and has featured it in a

presentation describing the implementation of the Dalvik virtual machine. (Google I/O Android

Video on “Dalvik Virtual Machine Internals” by Dan Bornstein (2008), available at

http://developer.android.com/videos/index.html#v=ptjedOZEXPM.) Therefore, Google also

acknowledges how symbolic reference resolution increases execution speed and has marketed its

significance through a Google I/O presentation to software developers.

429. Furthermore, I have read Professor Mitchell’s Opening Patent Infringement

Report, Section IV B, entitled “The Claimed Invention in the Patents-in-Suit are Necessary to

Achieve Sufficient Performance and Security”. I understand that Dr. Mitchell, in consultation

with Oracle Java engineers Bob Vandette and Dr. Peter B. Kessler, have conducted benchmark

testing and analysis of the technology described in the ’104 patent, and they have confirmed that

the performance of Android would be poor without the benefit of using the ’104 patent. I further

understand that the performance benchmark testing results show an execution speed

improvement of as much as 13 times with the ’104 patent than without the ’104 patent.

430. I understand that testimony at trial will show customer demand for devices with

faster execution performance. Based on the benchmark analysis, I conclude that Android would

have been a slower, and thus less attractive platform if it had not implemented the ’104 patent.

Case3:10-cv-03561-WHA Document577-5 Filed10/28/11 Page5 of 7

pa-1475723 130

Therefore, I understand that there is a nexus between the claimed invention of the ’104 patent

and Android’s commercial success.

431. For at least the above reasons, it is my opinion that secondary considerations

demonstrate the non-obviousness of the ’104 patent.

B. ’205 patent

11.. The ’205 Patent Solved a Long-Felt Need

432. Traditional Just-In-Time (“JIT”) Java compilers translate Java bytecode into

native machine code continuously during runtime, compiling the bytecode “just-in-time” before

it is about to be loaded or executed. Traditional JIT compilers then cache the compiled code for

later use. Symantec Corporation’s JIT compiler, which Sun licensed and integrated into JDK

1.1, is an example of such a traditional JIT compiler. (See Symantec’s Just-In-Time Java

Compiler to be Integrated Into Sun JDK 1.1 (Apr. 7, 1997), available at

http://www.symantec.com/about/news/release/article.jsp?prid=19970407_03 (Symantec’s JIT

compiler “instantly convert[s] Java bytecode to native code on the fly”).)

433. With JIT compilation, “[O]verall program execution time now includes JIT

compilation time, in contrast to the traditional methodology of performance measurement, in

which compilation time is ignored.” (Ali-Reza Adl-Tabatabai et al., Fast, Effective Code

Generation in a Just-In-Time Java Compiler, 33 PLDI ’98 Proceedings of the ACM SIGPLAN

1998 Conference on Programming Language Design & Implementation, 280, 280 (1998).) “As a

result, it is extremely important for the compiler optimizations to be lightweight and effective.”

(Id.) Furthermore, “native code generated by a JIT compiler does not always run faster than

code executed by an interpreter. For example, if the interpreter is not spending the majority of its

time decoding the Java virtual machine instructions, then compiling the instructions with a JIT

compiler may not increase the execution speed.” (’205, 2:5-10.) Accordingly, as the ’205 patent

inventors recognized, “there [was] a need for new techniques for increasing the execution speed

of computer programs that are being interpreted.” (Id. at 2:27-29.) “Additionally, there [was] a

Case3:10-cv-03561-WHA Document577-5 Filed10/28/11 Page6 of 7

pa-1475723 148

Dated: August 25, 2011
 DR. BENJAMIN F. GOLDBERG

Case3:10-cv-03561-WHA Document577-5 Filed10/28/11 Page7 of 7

