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The purpose of this text is to introduce a mathematical notation for defining the abstract computations 
carried out by computers and networks. This notation may be used in two manners at least: (1) to write the 
specification of the computation or (2) to formalize the semantics of existing devices. Specification of 
computations comes before implementation while formalization of existing devices is post facto. 

In both scenarios the notation defines an abstract mathematical computation in terms that are independent 
from the laws and phenomenons of physics. A major difference between the scenarios is the reference 
defining correctness. When a machine doesn't conform a specification we consider the machine is wrong 
while when a formalization of an existing machine doesn't match the machine we say the formalization is 
wrong.

Often, the definition of the computation carried out by a single computer will correspond in a large part to its 
instruction set architecture. In mathematical terms this is a random access stored program (RASP).1 It is best 
to extend the RASP with a mathematical definition of the architecture of the I/O hardware interfaces to cover 
the  functionality of all the computer hardware available. 

It is also possible that the computation is carried out by multiple cooperating computers. Then the 
mathematical definition will be an abstract network.

The notation may be viewed as a denotational semantics because the formulas denote mathematical entities 
which are the semantics of the hardware and its activities. However this denotational semantics has a strong 
operational feel because the definitions correlate tightly to the hardware components and theirs operations. 

See [Stoy 1981]. This is a classic textbook on the denotational semantics of programming languages. On 
page 12 Stoy describes an operational semantics as follows:

We define an “abstract machine”, which has a state, possibly with several components, and some set 
of primitive instructions. We define the machine by specifying how the components of the state are 
changed by each of the instructions. Then we define the semantics of our particular programming 
language in terms of that.

This paper explains how to do this, with the difference that the semantics is not assigned to a programming 
language. It is assigned to the arrangement of hardware in a computing machine or a network of computing 
machines.

Then Stoy describes a denotational semantics as follows: (emphasis in the original)

We give “semantic valuation functions”, which map syntactic constructs in the program to the 
abstract values (numbers, truth values, functions etc.) which they denote. These valuation functions 
are usually recursively defined: the value denoted by a construct is specified in terms of the values 
denoted by its syntactic subcomponents, and it is this emphasis on the values denoted by all these 
constructs that gives the approach its name.

This paper also explains how to do this with the difference, once again, that the semantics is not assigned to 
a programming language. It is assigned to the arrangement of hardware in a computing machine or a 
network of computing machines. Instead of syntactic constructs of the programming language we have 
hardware components from a computer or network. Each component denotes something in a mathematical 
world of meanings. The semantics of the whole computer or network is defined in terms of the semantics of 
its components and how they relate to each other. But because we work with a machine (or network), the 
denotational semantics ends up describing an abstract machine (or network). In this sense the denotational 
semantics is also an operational semantics. 

However there is a difference between the operational and denotational approaches. In a true operational 
semantics the exact steps and their order of execution count. Operational semantics is often preferred for 
programming language when the language designer wants the exact execution steps and the exact execution 
order to be part of the specification. In a denotational semantics it is the mathematical function which is 
denoted. Any execution order or any computation that is mathematically equivalent, which means gives the 
same answers for the same inputs, is accepted. 
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The method proposed here is primarily denotational. I make no effort to capture the exact execution steps 
and the exact execution order. Any implementation that is mathematically equivalent will carry the correct 
semantics. If you prefer an operational approach lambda-calculus is not the best language. I would suggest to 
use tiered definitions where some primitives are defined in a denotational manner with lambda-calculus and 
then the abstract machine is defined in an operational manner in terms of these primitives. This allows to 
anchor the definition in the mathematical roots of lambda-calculus without giving up the ability of specifying 
execution steps and execution order. This suggestion is not put in practice in this paper.

This semantics is not a description of the hardware. It doesn't contain the information necessary to describe 
the physical aspects of the hardware. Several very different implementations of the same semantics are 
usually possible including 'virtual' implementations entirely in software. The denotational semantics is a 
statement of the meanings the bits and the computations must have in the universe of mathematics. The 
only property of the hardware that is described is that it has to convey the specified semantics.

I call this phenomenon “Minsky's ruthless abstraction” because Marvin Minsky has said it best:2

[I]t is important to understand from the start that our concern is with questions about the ultimate 
theoretical capacities and limitations of machines rather than with the practical engineering analysis 
of existing mechanical devices.

To make such a theoretical study, it is necessary to abstract away many realistic details and features 
of mechanical systems. For the most part, our abstraction is so ruthless that it leaves only a skeleton 
representation of the structure of sequences of events inside a machine – a sort of “symbolic” or 
“informational” structure. We ignore, in our abstraction, the geometric or physical composition of 
mechanical parts. We ignore questions about energy. We even shred time into a sequence of separate 
disconnected moments, and we totally ignore space itself! Can such a theory be a theory be a theory 
of any “thing” at all? Incredibly, it can indeed. By abstracting out only what amounts to questions 
about the logical consequences of certain cause-effect relations, we can concentrate our attention 
sharply and clearly on a few really fundamental matters. Once we have grasped these, we can bring 
back to the practical world the understanding, which we could never obtain while immersed in 
inessential detail and distraction.

The notation is designed to be flexible. It has the semantical capability to define a mathematical denotation 
for the computational effects of a diversity of physical phenomenons including the operations implemented in 
digital circuits, but also other physically occurring events such as noise on communication lines, powering off 
devices, disconnecting cables and random events such as the arbitration of which CPU will access main 
memory next in a symmetric multiprocessing (SMP) system.

Introducing the Mathematical Notation

Let's start with some conventions on mathematical notation that will be used in the rest of this document. 
The notation is a syntactic sugared version of lambda-calculus. This means the universe of mathematical 
denotations is a mathematical universe described by lambda-calculus. I assume the reader is already familiar 
with lambda-calculus. If this is not the case, [Hankin 2004] is a good introductory textbook. 

It will help if the reader has some knowledge of domain theory as it is used in denotational semantics.3 In this 
notation lambda-calculus variables and expressions will sometimes be given a type. Such types are called 
domains. The notation does not explicitly provide a formal type system but, informally, we ensure each 
expression is associated with a domain. Then the syntax of lambda-calculus expressions correspond to 
denotations in domains. In this sense, the expressions have types. Stating the domain of an expression also 
helps document the intended meaning of the calculations. 

Lambda-calculus has been proven to be equivalent to general recursive functions, and by consequence to 
Turing machines in terms of which mathematical function all these models are able to compute. (For instance 
see [Hankin 2004] pp. 98-101) Therefore all definitions written in this notation are Turing-computable.
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Atomic Domains

The domain None (in boldface) which contains the single value None which is used to represent the absence 
of data. 

Bool is the Boolean domain. It contains the two Boolean values True and False, sometimes written 1 and 0 
respectively. Members of domain Bool are called bits. The usual boolean operations Not, And, Or and Xor are 
supported. The conditional if a then b else c is the expression that has value b when a is True and has value c 
when a is False.

The domain N contains the natural numbers 0, 1, 2 . . .  This domain supports the ordinary arithmetic 
operations.

If n is a natural number then n (in boldface) is the domain containing the natural numbers smaller than n. For 
instance 8 is the domain containing the numbers 0 to 7 inclusively.

Function Domains and Some Related Syntactic Sugar 

If C and D are domains then C → D is the function domain of functions from C to D.

If f is a function in domain C → D and x is in domain C then the application of f to x is written by juxtaposition 
with a separating white space as in f x. It denotes the value of f in D when the function is applied to the 
argument x. 

Lambda-calculus supports high order functions, that is functions whose values are themselves functions. For 
example if C, D and E are domains then C → D → E is a domain. The → operator associates to the right, that is 
C → D → E is equivalent to  C → (D → E). If f is in domain C → D → E, x is in domain C and y is in domain D then 
f x y denote the application of function f x to y. That is application associates to the left. Parentheses can be 
used to specify a different order in the usual manner.

While lambda-calculus uses single letter variable names this notation uses multiple alphanumeric characters 
names to make them descriptive, like is customary in programming languages. This is why when application 
doesn't use explicit parenthesis whites space must be used to separate variable in a juxtaposition denoting 
application, e.g. f(x) or f x must be used and not fx to distinguish this application from the long variable name 
fx. 

Let M be a lambda-expression which may or may not involve the variable x. Then λx.M is the abstraction of x 
from M. It denotes the function that takes a value as a parameter and return the value M evaluates to when x 
assumes this parameter value. In the case M does not involve the variable x the function will be a constant 
function which always evaluates to the same value.

The semicolon is the composition operator, e.g. f;g means λx.g(f(x))). Please note the order. The first function 
listed is the first one applied. Composition is associative, that is f;g;h = (f;g);h = f;(g;h). Also application has a 
higher priority than composition, that is f;g x = f;(g x) and f x;g = (f x); g.

The let construct assigns a temporary name to a value for use in a lambda-calculus expression M. The syntax 
is let (x=v)M and it is synonymous with (λx.M)(v).

Definitions are allowed to list their parameters on the left-hand side. For example, assuming M is some 
lambda-calculus expression one may write f(x) = M instead of f =  λx.M. 

Cartesian Products and Currying

Let C and D be domains, then the Cartesian product of C and D is a domain written C ⨯ D.  

The members of C ⨯ D are ordered pairs 〈a, b〉 where a is in domain C and b is in domain D. 

Cartesian products may be iterated n times for any finite n ≥ 1. For example  C ⨯ D ⨯ E is a Cartesian 
product of three domains C, D and E.
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Members of Cartesian products are tuples, denoted by comma separated lists within parenthesis. For 
example (a, b, c) represents a triple whose values are respectively a, b and c. If this triple is in the Cartesian 
product  A ⨯ B ⨯ C then a is in A, b is in B and c is in C.

The projection of the ith element of a tuple of size n+1, 0  i  n  is written as πi,n. For instance assuming 
t=〈a, b, c〉 then π0,2(t)=a, π1,2(t)=b and π2,2(t)=c. 

The substitution of a value for the ith element of a tuple of size n+1, 0  i  n  is written as Updi,n. This is also 
known as an “update” operation, hence the notation. For instance, assuming t=〈a, b, c〉 then 
Upd0,2(t, z) = (z, b, c), Upd1,2(t, z) = (a, z, c)  and  Upd2,2(t, z) = (a, b, z).

In ordinary lambda-calculus functions depending on multiple parameters are curried, which means each 
parameter is a separate abstraction that must be applied in succession. This is the ordinary addition x + y of 
two natural numbers would be written Add x y where Add is a curried version of '+',  i.e.  Add =  λxλy.x + y.

As a matter of syntactic sugar, this notation allows the use of functions in uncurried form. Then the 
expectation is that the function expect a single parameter which belong to a Cartesian product domain. 
Definitions with parameters identified on the left-hand side are allowed in both curried and uncurried form. 
For example f(x)(y)= M means f =  λxλy.M  and  f(x, y) = M means f =  λz.(λxλy.M)(π0,1(z))(π1,1(z)).

When the same domain is involved in a Cartesian product with itself and exponent notation is used to 
describe the product. For instance  B ⨯ B may be written B2 and similarly B ⨯ . . . B with n occurrences of B 
may be written Bn. 

The domain B denotes the Cartesian product of eight bits Bool8, or the domain of bytes,

Disjoint Unions

Let C and D be domains, then the disjoint union of C and D is a domain written C + D. 

The members of C + D are either members a of domain C or members b in domain D. The union is called 
disjoint because when a domain is united with itself, as in C + C, we distinguish between the members a of 
the left-hand side domain C from members b in the right-hand side domain C.

Disjoint unions may be iterated n times for any finite n ≥ 1. For example  C + D + E is a disjoint union of three 
domains C, D and E.

Members of disjoint unions are members from the individual domains labeled with which of the domain they 
come from. If U is a disjoint union of n domains D0 + . . . Dn then

● which(x) is a function in domain U → n identifying for every x in U the index number of the individual 
domain in the union the value of x comes from. Please note that the indexes start counting at 0.

● inj i(x) is a function Di → U which return the value in U corresponding to x in Di. This function is called 
the injection function from Di into U.

● sel i(x) is a function U → Di which return the value in Di that was originally injected in U. If x wasn't 
originally injected from Di that is it came from Dj with j ≠ i, then sel i(x) is Di where Di denotes the 
bottom element of the domain Di according to domain theory. This function is called the selection 
from U into Di. 

Selection and injection are (almost) inverse operations. The equation x = sel i(inj i(x)) holds and the other 
equation x = inj i(sel i(x)) holds whenever which(x) = i.

The result of a selection operation cannot be tested for Di because such a test function cannot be defined in 
lambda-calculus.4 It is best to test for the appropriate domain with which before doing a selection with sel i.

As a matter of syntactic sugar, the injection and selection operators are omitted from the notation when the 
context unambiguously identify which inj i or sel i operator should be used.

As a matter of syntactic sugar whenever the domain D occurs only once in a disjoint union, the function isD in 
domain U → Bool  stands for a test of the which operator corresponding to D, that is  isD(x) = (which(x)=i) 
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where i is the index of D in the disjoint union. For example if U = N + None then isNone(x) is True when 
which(x) is 1 and False otherwise.

Recursive Domains and Recursion

Domains may be defined by means of recursive equations using previously defined domain and the operators 
→, ⨯ and +. See [Stoy 1981] pp. 138-141. For example L = (N ⨯ L) + None defines a domain containing the 
lists of natural numbers. The value None represents the empty list and a pair 〈n, r〉 represents a list where n is 
the first number in the list and r is the rest of the list. 

The Y combinator is the lambda-calculus expression satisfying the fixed-point equation f = Y f. This 
expression is written λf.(λx.f(x x))(λx.f(x x)). Generally speaking if f belong to the domain D → D then Y f 
belongs to the domain D.

The Y combinator is used to define recursion. For example the Double function which doubles every member 
of a list of natural numbers may be written:

Double = Y λf.λx.(if isNone(x) then None else (2*π0,2(x), f(π0,2(x)) ))

Generally speaking when f belongs to the domain (C → D) → (C → D) then Y f is a recursively defined function 
in the domain C → D. As a matter of syntactic sugar, recursive definitions may be written as recursive calls to 
the defined function. For example let's suppose that M[f, x] is an expression involving f and x such that 
λx.M[f, x] belongs to domain C → D, then f(x) = M[f, x]  means f = Y λg.λx.M[g, x] . Using this convention the 
definition of Double may be written as:

Double(x) = if isNone(x) then None else (2*π0,2(x), Double(π0,2(x)) )

The Steps to Define the Semantics

Let's refresh our memory of the task at hand. One possible way to define an abstract machine is done by 
starting with a complete description of a computer and removing all references to physical elements until we 
are left only with a description of the information in the abstract. For example a flag is not a flag, it is a bit of 
boolean data. A register is not a register, it is a sequence of boolean data. An instruction is not affecting 
registers and flags. It is a mathematical operation on boolean data. When we are done with this removal 
process no reference to anything physical is left. We have a formal mathematically defined abstract machine 
that operates on mathematical information. To carry out this formalization with accuracy would require a 
complete documentation of the compute hardware including the CPU and the hardware interfaces to the 
peripherals.

It is equally possible to specify the abstract machine beforehand and then build a computer to match this 
specification. 

For the sake of readability I use an unusual convention. Language referring to physical components as if they 
were mathematical entities should be understood as referring to a corresponding abstract mathematical 
entity.  For example language similar to “define (some particular) computer hardware mathematically” 
actually mean “define the abstract mathematical device that corresponds to (some particular) computer 
hardware”. Without this convention the repeated use of phrases like “abstract mathematical device that 
corresponds to (some particular) computer hardware” will grow pedantic and tiresome. Besides this kind of 
language conveniently define the exact semantical correspondence between hardware and abstract device. 
This is in accordance with the goal of this paper which is to show how to define an operational/denotational 
semantics for the hardware.

You actually define the abstract machine by carrying out the following steps.

1. Make an inventory of all streams of input and output and define the corresponding mathematical 
domains.

2. Make an inventory of all the places where information is stored and define the corresponding 
mathematical domains. Then define the domain for the machine states.

3. Make an inventory of all operations changing the state of the machine of and define the 
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corresponding mathematical transitions.
4. Identify the loops that execute the machine transitions and define the corresponding mathematical 

formulas for the body of these loops.
5. Define what is a run of a program on the abstract machine.
6. (Abstract networks only) Connect the inputs and outputs of abstract machines to define the 

corresponding abstract network. 

Step no 6 is carried out only when we need a mathematical definition of a abstract network corresponding to 
a network of computers. 

This is a definition of the computation that doesn't consider some details of the hardware which are 
transparent to the software. For example it is assumed the CPUs access memory directly. If there is a cache or 
even multiple level of caches in the CPU the mathematical definition of the abstract machine shows no sign of 
it. CPU features such as pipelining that are transparent to the definition of the instructions are not considered. 
The specifics of memory bus arbitration are absent beyond the basic assumption that CPUs and DMA 
peripherals access the memory one CPU at the time. Such hardware features are transparent to software in 
the sense that they don't affect the computation resulting from the execution of the machine instructions. 
Their only effect is speedier execution of the same instructions resulting into a faster but otherwise identical 
computation. Therefore they don't need to be included in a mathematical definition of the computation. 

Let's review the five (or six) steps in details.

Step 1: Make an inventory of all streams of input and output and define the corresponding mathematical  
domains.

This step is about defining where are the boundaries of the abstract machine. Input is information that comes 
from the outside into the abstract machine. Output is information that goes from the abstract machine to the 
outside. The boundaries are the places where the abstract machine connects to the outside. There are two 
kinds of boundaries to consider. The first kind corresponds to signals that are either received (input) or 
emitted (output) over physical connections when the machine is actually implemented in the real world. The 
second kind is nondeterministic events that may affect the computation. In the notation proposed in this 
paper nondeterminism is treated as a source of input to an otherwise deterministic computation.

Signals

Let's consider the signals first. They typically correspond to often some kind of digital or analog interface that 
defines each hardware boundary. The task is to identify all such interfaces and draw mathematical boundaries 
for the abstract machine that are meaningful in terms of the hardware machine transitions that manipulate 
the information. If we draw the boundaries at places that are not meaningful to the machine transitions they 
will be awkward to define mathematically when we get to step 3.

For example is the keyboard part of a generic computer? A typical CPU knows no instruction for directly 
handling keyboards. It may have access to some memory mapped input port and I/O register to interact with 
the keyboard. It uses some I/O specific instructions to manipulate the ports and registers. You can use these 
instructions to write drivers for the keyboard. Drivers are software. It is the individual instructions that will be 
included in the abstract machine transitions. Therefore the boundaries of the computing device should be 
the input port and register for the keyboard interface. The keyboard itself is an independent device. As a rule 
of thumb it is usually best to put the boundaries at the I/O ports and registers and leave the peripheral  
devices outside the abstract device. 

It is possible to define an abstract machine that performs the computational task of a peripheral. A disk 
controller manages the storage on disk and has a corresponding abstract machine that manages the 
information. A keyboard has a corresponding abstract machine that sends signals over a wire in response to 
key presses. The peripherals connected to the central computing unit may be viewed as a network. Then the 
complete computer, peripherals included, can be translated into a abstract network using the techniques that 
will be discussed when we get to step 6. This implies that buses like USB ans SCSI are treated mathematically 
like networks, but this is also true of point to point connections like serial lines. But this analysis is not what is 
being done in this step 1. I mention it only to clarify that putting the boundary of the computation device at 
the I/O ports and registers is not overly limiting. It is possible to give a mathematical semantics to a computer 
complete with its peripherals.
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Nondeterministic Events

The other kind of boundaries to the abstract machine is the nondeterministic operations which influence the 
computation. They are treated as inputs to the formulas defining the computation. We could define a 
probabilistic abstract machine which from time to time makes a probabilistic choice in the course of the 
computation. This would qualify as a mathematical algorithm of the probabilistic kind. But probabilistic choice 
is not part of lambda-calculus5 and we can't use this language to define this sort of algorithms. The solution 
used in this paper is to treat any source of nondeterministic events as something external to the algorithm 
which produces data to be supplied as input to the computation. Then the algorithm is defined in a 
deterministic manner relative to these external sources.

Assuming we extent lambda-calculus with the capability of making probabilistic choice, whenever the 
notation reads a tape used as a source of nondeterministic events we may replace it with a probabilistic 
choice of some untold distribution. Both formalisms are mathematically equivalent.

Example of nondeterministic events is the choice of which CPU access main memory next in a symmetric 
multiprocessing system (SMP) and, the moment when power is turned off. 

A Random Number Generator as an Example of an Input Tape

Let's take a look at how to define mathematically input. For the sake of making a simple example, consider a 
hardware random number generator made of an analog to digital converter that measures the thermal noise 
on an otherwise unused circuit. Analog to digital conversion is input. The input is always provided on request 
from the computer. The random number generator never takes the initiative to supply any data. The data is 
unpredictable and introduces an element of nondeterminism in the computation. This is mathematically 
represented by an abstract “tape.”

A random number generator will produce a sequence of number n0, n1, n2,  etc. I use numeric indices to 
reflect the fact that one random number comes first, then another, and another etc because the random 
number generator is called at multiple occurrences in time. This sequence is potentially infinite if we consider 
that the computer may run into an infinite loop. Mathematically speaking, this sequence is the tape. When 
the computer executes the instruction that reads a random number from the input port, it corresponds to a 
transition in the abstract machine where the tape is read to find the number ni for the next index in the 
sequence. We provide unpredictability and nondeterminism by requiring the abstract machine to obey two 
rules when using the tape.

1. The tape as a whole is an input parameter to the formulas defining the abstract machine. Every new 
run of the machine uses a different sequence of numbers because it is assumed a new tape 
parameter is being supplied. 

2. Also the abstract machine never asks the tape for ni twice for the same i. The abstract machine 
must request the values in order starting with n0 then n1 and so on respecting the sequence. Then 
every tape read request is guaranteed to return an independent and usually different value.

This technique replicates the behavior of a random number generator without making an explicit use of a 
probabilistic choice. Unpredictability and nondeterminism is hidden by the fact the tape is not defined from 
within the abstract machine. It is provided separately as a parameter. 

The tape technique will work regardless whether the tape follows a perfectly random statistical distribution, a 
distribution that has a bias or the distribution for a completely broken generator that always picks the same 
number. In all scenarios we may assume the tape content will reflect the distribution. The abstract machine 
does not contain any reference to probability. Such reference is implicit because the abstract machine is 
defined relative to the tape and this definition works the same for all tapes.  

The tape technique also works for any external source of sequential information regardless whether it is 
deterministic or not. All external sources generate a similar sequence of values  n0, n1, n2,  etc that is passed 
as an input parameter to the formulas defining the abstract machine.

Outputs and Networking
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Tapes may be used in three flavors: input, output and networked. We have just seen how an input tape works. 
The source of the input is assumed to be outside of the computation and is not defined by the formulas for 
the abstract machine. The tape is assumed to contain a record of all the information that will be produced by 
the external source and the abstract machine reads the tape when it gets to it.

Output is treated symmetrically. A sequence of values  n0, n1, n2,  etc is generated and emitted by the 
abstract machine. The same tape abstraction is being used except that for outputs the tape is written by the 
abstract machine instead of being read. The recipient of the information is outside of the computation and is 
not defined by the formulas for the abstract machine. At the end of the computation the output tape contains 
a record of all the information generated by the abstract machine. If the computation runs into an infinite 
loop an infinite quantity of information will be written on the tape.

Bidirectional communication is a pair of tapes going in opposite direction. One input tape is read for incoming 
data while the other tape is an output tape for the outgoing data.

Networked tape is when both the reading and writing ends of the tape are part of the computation. There 
may be one abstract machine writing the tape and another reading from the tape in the same abstract 
network. The writing machine generates a sequence of values  n0, n1, n2,  etc which is read in the same order 
by the reading machine. At the end of the computation the tape contains a record of all the information that 
has been written. This may be an infinite quantity of information in the case of an infinite loop.

Storage

There are physical devices that can store information and let the computer retrieve it at a later time. For 
example a hard disk connected to a SCSI bus. This information is not included in the definition of the abstract 
machine because they are stored in peripherals. The proposed abstraction in such situation is an abstract 
network. Both the computer and hard disk are abstract machines that communicate over an abstract 
communication link. The abstract computer writes I/O requests on a network “tape”. The abstract disk reads 
this tape as input and writes answers on another network tape which will be read by the computer. In other 
words there are two tapes. One that moves data from the abstract computer to the abstract hard disk and 
one in the other direction. How to model this mathematically will be discussed in step 6.

The Domains for Tapes

A tape is mathematically a sequence  n0, n1, n2,  etc of elements from a domain D. Associated with the 
sequence there will be two counters that keep track of where we are in the reading and writing sequences to 
ensure the abstract machine respect the constraints of the tape metaphor. When the abstract machine reads 
from an input tape, it asks for the element nc in the sequence that matches the current value of the read 
counter c. Then the counter must be incremented so the next time the machine reads the next value is read. 
Similarly for an output tape a write counter keeps track of where in the sequence the next value will be 
written. Again this counter must be incremented after each write. A network tape will use both a read and a 
write counters with the additional constraint that the read counter is never allowed to get past the already 
written portion of the tape.

The mathematical domain for the counter is N. This is the natural numbers 0, 1 ,2 etc to infinity. The 
mathematical domain for the tape is N → D + None where D stands for whatever domain is applicable to an 
individual element in the sequence. The value None is a fictitious value used to represent the lack of 
information. Reading a blank tape or attempts to read a yet unwritten portion of the tape will return None. 

The value None is used, for instance, to help define the computation that occurs when a device driver 
attempts to read data that hasn't been yet supplied by a external source. For example consider a keyboard. 
Data can be read from a keyboard only when someone presses a key. What happens if a buggy keyboard 
driver tries to read a key stroke from the input port of the keyboard when the user hasn't pressed any key? It 
depends on what the port circuitry is designed to do in such circumstances. It may hang until the user 
presses a key and then proceed with the input. It may trigger a hardware exception. It may return some 
unpredictable data. The mathematical semantics of this circuitry has to provide for this behavior6. In this 
notation this is done by including in the formula for the semantics of I/O instructions a test of whether the 
value being returned is None and then make the calculation proceed accordingly.

Tapes are tuples defined in the following domains:
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ReadCounter = N
WriteCounter = N

InputTapeD = (N → (D + None)) x ReadCounter
OutputTapeD = (N → (D + None)) x WriteCounter
NetworkTapeD = (N → (D + None)) x ReadCounter x WriteCounter

In these definitions the first element is the sequence and the other elements are the counters. The domain D 
is whatever domain correspond to the individual values being read and/or written. A similar set of domains 
must be defined for each different domain D of values recorded on tapes.

A generic domain for all three types of tapes is:

TapesD = InputTapeD + OutputTapeD + NetworkTapeD

One may test which kind of tape with the functions IsInputTapeD(t), IsOutputTapeD(t), IsNetworkTape(Dt) 
which are defined according to the previously mentioned syntactic sugar convention regarding the use of the 
which function.

A blank network tape is the triple (λx.None, 0, 0). A blank input or output tape is the pair (λx.None, 0). 

The exact formulas for reading and writing on tapes will be given later.

Examples of What Needs to be Inventoried

The inventory of inputs and outputs must be completely exhaustive. It must include interrupt signals. The 
CPU constantly monitors the interrupt lines. When the interrupt signal arrives it temporarily suspend the 
execution of whatever routine is currently executing and transfers control to an interrupt handling routine. 
The abstract machine must reproduce this behavior. This requires a (N → Bool + None)  for each interrupt 
signal.

Elements of the computer architecture which are undefined should be treated as nondeterminstic events. 
Therefore a tape input must be provided for each of them. For example on some CPU some instructions leave 
some flags in undefined states. This means the vendor makes no commitment as to what values the flags will 
hold and warns the programmers not to rely on these flags after such instructions are executed. How do we 
define mathematically “undefined”? This is treated like a random number generator. If the abstract machine 
reads the flag values from an input tape it will make them the mathematical equivalent of “undefined”.

Another example of this kind of tapes occurs when multiple piece of circuitry have access to shared memory. 
For example in SMP systems where there are several CPUs running concurrently. Or when the CPU shares 
memory access with DMA peripherals. In these circumstances there is a need to determine which of the 
components has the next access to memory. This decision depends on the timing of the activity of the 
components and, in the case of conflicting timing, on a possibly nondeterminsitic decision of some arbitration 
circuit. In this notation we eschew the difficulty by using an input tape to indicate which component will 
access memory next.

Step 2: Make an inventory of all the places where information is stored and define the corresponding 
mathematical domains. Then define the domain for the machine states.

Mathematical domains are abstractions7 for the information held in storage. A computer stores bits in many of 
its components. Each CPU flag contains one bit. A register will contain 16, 32, 64 or whatever number of bits 
that makes the size of the register. Memory will contain a number of bytes. There are bits in I/O registers and 
graphics memory. The mathematical semantics of the computer must include a mathematical representation 
of every bit stored in the computer. This implies to make an inventory of every places where the computer 
stores bits and find the corresponding mathematical domain. 

The domain that corresponds to a single bit, say a CPU flag, is Bool.
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The domain that corresponds to a byte is  Bool8, ie a Cartesian product of eight bits. this domain is also 
denoted by B. Similarly Bool16, Bool32, Bool64, corresponds to words of 16, 32 and 64 bits respectively.

The domain that corresponds to 1 kilobyte of data is B1024.

Once we have inventoried all the locations where data is stored it is possible to define a mathematical 
domain for the possible machine states. This is defined as the sum (actually a Cartesian product) of all 
information stored in the computer as well as the current states of the tapes. A abstract machine operates by 
performing mathematically defined transitions on this state. These transitions are the mathematical 
semantics of various actions taken by the computer on the information. 

The definition of the mathematical domain for states is a prerequisite to step 3 where will make an inventory 
of all these actions and define the corresponding transitions.

We have an inventory of all the places where information is stored in the computer. Let's say there are i such 
places. This gives us i mathematical domains called M0 to Mi-1. We also have an inventory of all tapes. Let's 
say there are j of them. This gives us j mathematical domains called  Tape0 to Tapej-1. These domains are 
aggregated in a Cartesian product:

M0  ⨯ ... Mi-1 ⨯ Tape0 ⨯ ...  Tapej-1

For reasons that will be apparent during step 5, we add to these mathematical domain a domain called 
Status which holds three possible values: Running and Stopped. This status domain will be used to define 
what is a run of a program on the abstract machine and also will be helpful in defining a computation run on 
an abstract network of abstract machines. 

Adding the Status domain to the Cartesian product gives us the domain S of abstract machine states:

S = Status ⨯  M0  ⨯ ... Mi-1 ⨯ Tape0 ⨯ ...  Tapej-1

Step 3: Make an inventory of all operations changing the state of the machine of and define the 
corresponding mathematical transitions.

The task in step 3 is to make an inventory of all possible operations a computer may perform on its state and 
define their semantics in terms of mathematical transition. 

The operations are actions taken by the hardware that either change the information in memory, reads input 
or write output. An obvious example of such operations are the instructions recognized by the CPU. But the 
list of CPU instructions is by no means the complete list of computer operations. Some of the operations are 
not instructions. For example interrupts will cause the CPU to jump to the interrupt handling routine but this 
action is not an instruction stored in memory. Some operations are not performed by the CPU at all. They may 
be the instructions for a co-processor, a GPU or the activity of an I/O device with DMA capability. Any 
component capable of independent activity will have corresponding operations that must be inventoried in 
this step 3.

The operations must be atomic in the sense that when started they are always performed through completion 
without being interrupted for the execution of intervening work. Some operations could be large. They may 
be the equivalent of a subroutine but hard coded in hardware. Then the question is could they be interrupted 
mid execution? Non atomic operations must be broken down into atomic components. The reason is the 
abstract machine needs to reflect the actual computation done by the computer. For example it has to ask 
tapes for interrupts in order to reflect that aspect of the computation. In step 4 we will discuss how this is 
done. It happens that the mathematical treatment of the transitions assumes they are atomic and non-
interruptible. Therefore the transitions must corresponds to atomic and non-interruptible computer 
operations.

A similar question will pertain to DMA transfers. Do they seize exclusive access to memory for the duration of 
the transfer? Or are other components allowed to interact with memory while the transfer occurs? In the 
latter case the DMA transfer is not atomic and should be broken down into smaller atomic transfers.
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Giving the Notation a Programmatic Feel

The notation allows to define the transitions in a manner that is similar to what one would write in a 
programming language. This is by design. This feature makes it easy to keep track of the correspondence 
between the physical machine and its mathematical semantics. 

We give each component of this Cartesian product a mnemonic name. For example the instruction pointer 
may be called IP and the stack pointer SP. These mnemonics are given a numeric code, as in:

IP = 0
SP = 1
etc ...

This enables us to define a ValueOf1(S) in the domain  S →  N → (M0  + ... Mi-1 + Tape0 + ...  Tapej-1) as follow:

ValueOf1(S)(Element) = If Element = 0 then π0,i+j-1(S)
else if Element = 1 then π1,i+j-1(S)
. . .
else πi+j-1,i+j-1(S)

The function ValueOf1(S)(Element) returns the value of the element in the state S. 

Another useful function is Upd1 which allows to change a state into another state on an element-wise 
manner. Assuming that n is the mnemonic 

Upd1(Element, newValue)(S) = If Element = 0 then Upd0,i+j-1(S, newValue)
else if Element = 1 then Upd1,i+-1j(S, newValue)
. . .
else Updi+j-1,i+j-1(S, newValue)

Notice that the state parameter S is curried in this definition of Upd1. The enable to use the composition 
operator, the semicolon, to aggregate change of states on individual elements into a larger composite 
transition. For example and operation of swapping the values of two registers r1 and r2 may be written as:

Swap(r1, r2)(S) =  Upd1(r1, S(r2)); Upd1(r2, S(r1))

or equivalently:

Swap(r1, r2)(S) =  (Upd1(r1, S(r2)); 
 Upd1(r2, S(r1))
)

The intent is to treat the Upd1 function as a form of assignment statement. Upd1(r1, value) means the 
element r1 is assigned the value in the state. This is much like the C language statement r1 = value. But 
there is a difference with C in that the state being updated is given an explicit name which is being 
referenced in the definition of the Swap transition. The function call Upd1(r2, S(r1)) assigns to r2 the value r1 
has in the original state S because the name S is referenced. This is different from the pair of C assignments 
r1 = r2; r2 = r1 which would result into r2 retaining it original value. So while the notation has a 
programmatic feel the fact that the state is explicit means this definition is a mathematical expression and 
not a programming language instruction.

Assuming that F and G are expressions denoting functions in domain S →  S and test is an expression 
evaluating to a value in domain Bool,  and that test, F and G are allowed to depend on a variable S ranging 
over states in S; then these two idioms may be used in a composition. 

● (If test then F)(S) = if test(S) then F(S) else S

This idiom can be used in a formula like (If S(Zflag) then Upd1(x, v)) which means update only when 
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the flag Z is set otherwise do nothing. It is assumed that Zflag is the mnemonic name that locates the 
flag Z in the state.

● (If test then F else G)(S) = if test(S) then F(S) else G(S)

This idiom gives a choice of which function F or G is included in the composition depending on the 
condition. 

This if then else  conditional composition can be used, for example, to swap the content of three registers in 
such a way that the content of r1 is the smallest number, then r2 holds the middle number and r3 the largest 
number. 

Order3(r1, r2, r3)(S) = (If (S(r1) < S(r2))
then (if (S(r1) < S(r3))

then ( if (S(r3) < S(r2)) 
then Upd1(r2, S(r3)); 

Upd1(r3, S(r2)) 
)

else ( Upd1(r1, S(r3)); 
Upd1(r2, S(r1)); 
Upd1(r3, S(r2)) 

)
)

else (if (S(r2) < S(r3))
then (if (S(r3) < S(r1)) 

then (Upd1(r1, S(r2)); 
Upd1(r2, S(r3)); 
Upd1(r3, S(r1))

)
else ( Upd1(r1, S(r2));

Upd1(r2, S(r1))
)

)(S)

Order3 is just an example of what we can do with this notation8.  

With large strings of compositions like this we need to spread the formula on multiple lines and indent for 
readability. A noted before this style of writing mathematical formulas looks very much like code in an 
imperative programming language. The Upd1 function is similar to an assignment and the semicolon looks 
like a statement separator. The “If then else” construct looks like conditional statements. Composable 
functions like Swap work like procedure calls. 

This is not accidental. I have borrowed this technique from denotational semantics which is a method for 
defining mathematically the semantics of source code.9 The trick is that carefully crafted high order functions 
when composed behave in a similar manner as the statements of programming languages. If you define the 
mathematical domain correctly then specially crafted high order functions will have the same semantics as 
programming language statements except that they define transitions on mathematically defined states and 
not operations on a physical machine.

We bring Turing-completeness to the notation by introduction the while loop construct:

While(test, body)(S) = if test(S) then (body; While(test, body))(S) else S

Here  test must be an expression which evaluates to a value in domain Bool and body be a function in D → D 
for some domain D. This expression keeps iterating body until test(S) is False. Then whatever value S turned 
out to become after the repeated of body is the returned value.

Memory Access and Updates
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There is an isomorphism between Dn. and n → D. There is a one-to-one correspondence between the tuples t 
in Dn and the functions f in  n → D such that f(i)=πi,n(t) for each pair of matching t and f. It is advantageous to 
use this isomorphism to represent in a function domain instead of a Cartesian product information that has a 
number of more granular elements. Main memory is a good candidate. This simplifies the notation for 
memory updates. The reason is the projection functions πi,n are a discrete arrays of functions in the dialect of 
lambda-calculus this notation is using. In order to define a uniform function that takes integers i as 
parameters and produce a corresponding  πi,n in Dn → D one would need a huge cascade of “if” expressions 
with one if for each value of i. A similar observations hold for the Updi,n. While such definitions are possible 
they are overly bulky and inconvenient to handle.

This problem does not occur when one uses the domain  n → D. For example if we use the domain n → B for 
main memory, then  Memory(S)(i) is a uniform function that takes an integer i,  0  i  n, as a parameter and 
produces the same value as the discrete array of functions  πi,n(Memory(S)) would have produced had the 
domain Bn been used. 

Also assuming M is in  n → B then  Upd1(i, x)(M) = λy.if y=i then x else M(j). This is the same as Updi,n(M, x) 
had M be in Dn except that in this case Upd1 is a function accepting i as a parameter in n instead of being an 
array of discrete functions Updi,n.

Please note that Upd1 is overloaded, meaning that the name is reused for different definitions depending on 
the domain of its last parameter. When S is in  Dn then Upd1(Element, x)(S) is in domain (n ⨯ D) → Dn → Dn 

while when M is in (n → D) then Upd1(i, x)(M) is in domain (n ⨯ D) → (n → D) → (n → D).

The function Upd2 assigns a value to an element within an element. For example Upd2(Memory, x, v)(S) 
means to assign value v to the memory cell x within the Memory element of state S. Assuming the element is 
in domain n → D the domain of Upd2 is ((n ⨯ n ⨯ D) → S → S  and its definition is:

Upd2(Element, item, value)(S) = Let (x = Upd1(item, value )(S(Element)) )
Upd1(Element, x)(S)

Finally we combine the functions Upd1 and Upd2 into a single function Upd. The first argument will be either 
an element mnemonic for element that are modified as a whole or a pair of a mnemonic and and index within 
the element to be modified. For example Upd(SP, x)(S) means update the stack point to value x while 
Upd( (Memory, i), x)(S) means update location i within main memory to value x. The domain for Upd is 
( (N + (N ⨯ N)) ⨯ D) → S → S and its definition is:

Upd(address, value)(S) = if which(address) = 0 then Upd1(address, value)(S)
else Upd2( π0,1(address), π1,1(address), value)(S)

The following function will sometimes be useful. It builds a pair suitable for use with Upd out of a numeric 
address x in memory.

address(x) = (Memory, x)

We also define a function  ValueOf(S)(address) which takes a state and returns the value corresponding to an 
address within this state. This function is in domain S → (N + (N ⨯ N)) →  D  where D is the domain of the 
element stored at this address.

ValueOf(S)(address) = if  which(address) = 0 then ValueOf1(S)(address)
else  ValueOf1(S)(π0,1(address))(π1,1(address))

As a matter of syntactic sugar we write S(address) for ValueOf(S)(address). This convention is justifiable 
because the domain of states is clearly not a function domain. The application of a state as if it were a 
function will always unambiguously denote an implicit use of  ValueOf.

Two more operations on Cartesian products are useful: slice and concatenation. Slice is the operation of 
extracting a section of the elements from the tuple. Slice is written with square brackets enclosing the range. 
For example 〈a, g, h, i, b, c〉[1:3] = 〈g, h, i〉. Concatenation is gluing two tuples together to make a bigger 
tuple. Concatenation is written with a + sign. For example 〈a, b〉 + 〈c, d〉 = 〈a, b, c, d〉. 
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Slices and concatenation are used to express mathematical operations on word size larger then a byte and 
make them fit with byte size memory. They enable to define mathematical operations like:

Read08(S, x) = S(address(x))
Read16(S, x) = S(address(x)) + S(address(x+1))
Read32(S, x) = S(address(x)) + S(address(x+1)) + S(address(x+2)) + S(address(x+3))

Write08(x, v)(S) = Upd(address(x), v)(S)
Write16(x, v)(S) = ( Upd(address(x), v[0:7]) ; Upd(address(x+1), v[8:15]) )(S)
Write32(x, v)(S) = ( Upd(address(x), v[0:7]) ; Upd(address(x+1), v[8:15]) ; 

Upd(address(x+2), v[16:23]) ; Upd(address(x+3), v[24:31]) 
)(S)

Assuming Memory is the mnemonic for main memory Readxx reads the corresponding number of bits from 
memory and return these bits as the value of the function. Writexx writes the corresponding number of bits in 
memory. These definitions are valid for little endian architectures. For big endian systems we need to define 
like this instead:

Read08(S, x) = S(address(x))
Read16(S, x) = S(address(x+1)) + S(address(x))
Read32(S, x) = S(address(x+3)) + S(address(x+2)) + S(address(x+1)) + S(address(x))

Write08(x, v)(S) = Upd(address(x), v)(S)
Write16(x, v)(S) = ( Upd(address(x+1), v[8:15]) ; Upd2Memory, x, v[0:7]) )(S)
Write32(x, v)(S) = ( Upd(address(x+3), v[24:31]) ; Upd(address(x+2), v[16:23]) ; 

Upd(address(x+1), v[8:15]) ; Upd(address(x), v[0:7]) 
)(S)

Note that the WriteXX functions have been curried. They can be composed with Upd using the semicolon 
operators.

It also useful to define a few stack related operations, SP being the stack pointer. These operations have the 
same endianess as the Readxx and Writexx they use. 

Push08(v)(S) = ( Upd(SP, S(SP)-1) ; Write08(S(SP), v) )(S)
Push16(v)(S) = ( Upd(SP, S(SP)-2) ; Write16(S(SP), v) )(S)
Push32(v)(S) = ( Upd(SP, S(SP)-4) ; Write32(S(SP), v) )(S)

Pop08(dest)(S) = ( Upd(dest, Read08(S, SP); Upd(SP, S(SP)+1) )(S)
Pop16(dest)(S) = ( Upd(dest, Read16(S, SP); Upd(SP, S(SP)+2) )(S)
Pop32(dest)(S) = ( Upd(dest, Read32(S, SP); Upd(SP, S(SP)+4) )(S)

Note that this stack grows downward. For a computer where the stack grows upward use this instead:

Push08(v)(S) = ( Upd(SP, S(SP)+1) ; Write08(S(SP), v) )(S)
Push16(v)(S) = ( Upd(SP, S(SP)+2) ; Write16(S(SP), v) )(S)
Push32(v)(S) = ( Upd(SP, S(SP)+4) ; Write32(S(SP), v) )(S)

Pop08(dest)(S) = ( Upd(dest, Read08(S, SP); Upd(SP, S(SP)-1) )(S)
Pop16(dest)(S) = ( Upd(dest, Read16(S, SP); Upd(SP, S(SP)-2) )(S)
Pop32(dest)(S) = ( Upd(dest, Read32(S, SP); Upd(SP, S(SP)-4) )(S)

Reading and Writing Tapes

For convenience let's define a few primitives that clarifies the tape semantics. The primitives would be:

© PolR 2011, revised 2012 Licensed under Creative Commons  Details



● Sequence which takes as parameters a state and the mnemonic for the tape and returns the 
sequence component of the tape. In symbol form this is the domain (S ⨯ N) → (N → (D + None)) 
where  D is the domain of the information items written on the tape.

● readCounter which takes as parameters a state and the mnemonic for a tape and returns the current 
value of the read counter if there is one, or 0 if there is none. This is the domain (S ⨯ N) → N.

● writeCounter wich returns the write counter for the tape but is otherwise identical to readCounter.

Only input and network tapes have read counters and only output and network tapes have write counters. 
Giving that tapes are in the domain TapesD = InputTapeD + OutputTapeD + NetworkTapeD then the 
which function identifies which kind of tape this is.

The three tape primitives are defined as follow:

Sequence(S, tapeMnemonic) =  π0,1(S( tapeMnemonic ))

readCounter(S, tapeMnemonic) = let (t=S( tapeMnemonic ))
( if which(t) = 0 then π1,1(t)
  else if  which(t) = 2 then π1,2(t)
  else 0
)

writeCounter(S, tapeMnemonic) = let (t=S( tapeMnemonic ))
( if which(t) = 1 then π1,1(t)
  else if  which(t) = 2 then π2,2(t)
  else 0
)

We use these primitives to define more explicit tape operations.

● WriteTape writes some information on an output or network tape identified by its mnemonic. It does 
nothing on input tapes. This is a function in domain (N ⨯ D) → S → S where D is the base domain for 
the items written on the tape.

● ReadTape reads the current content of an input or networked tape identified by its mnenomic. It 
returns None for an output tape. It also checks whether we get past the last written information on a 
network tape and returns None if this is the case. This is a function in domain (S ⨯ N) → D where D is 
the base domain for the items written on the tape.

● MoveTape increments the read counter of an input or networked tape identified by its mnenomic. This 
is equivalent to moving the reading head forward one position. It does nothing to an output tape. This 
is a function in domain N → S → S.

As a matter of convention we require that in machine states the read counter always point to the next 
element in the sequence to be read and likewise the write counter always point to the next element to be 
written. A write operation always increment the write counter to point to the next location. However the read 
operation is a function that returns the value at the current tape location. It doesn't affect the machine state. 
We require that every machine transition invoking ReadTape must immediately invoke MoveTape to comply 
with this convention.

The definition of the tape operations are:

ReadTape(S, tapeMnemonic) = 
let (t=S(tapeMnemonic) )

( if which(t)=0 then  π0,1( readCounter(S, tapeMnemonic) )
else if  which(t)=1 then None
else if readCounter(S, tapeMnemonic) >= writeCounter(S, tapeMnemonic) then None
else readCounter(S, tapeMnemonic)

)

The function call which(t) tells us whether the tape is input, output or network.
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For input tapes this returns the value of the sequence at the current read counter location.
For output tapes this returns None because reading one is invalid and shouldn't happen.
For network tapes we first check whether the read counter is greater than equal to the write counter. 
If so then we are reading past the written part of the tape and None is returned. Otherwise the value 
of the sequence at the current read counter location is returned.

MoveTape(tapeMnemonic)(S) = 
let (t=S(tapeMnemonic) )

( if which(t)=0 or ( which(t)=2 and 
readCounter(S, tapeMnemonic) < writeCounter(S, tapeMnemonic) )

then Upd( ( tapeMnemonic, 1), readCounter(S, tapeMnemonic)+1) 
)

This applies only to input or network tapes. It advances the position of the reading head within the 
machine state by incrementing the counter. This is done unconditionally for input tapes. For network 
tapes we must first verify the reading head will not get past the writing read by ensuring the read 
counter is smaller than the write counter. Nothing is done when the reading head is at the end of the 
written part of the tape.

WriteTape(tapeMnemonic, x)(S) = 
let (t=S(tapeMnemonic) )

( if which(t)=1 or which(t)=2 then
let (s=Upd( writeCounter(S, tapeMnemonic), x)(Sequence(S, tapeMnemonic)) )

(Upd( ( tapeMnemonic, 0), s)
Upd( ( tapeMnemonic, 2), writeCounter(S, tapeMnemonic)+1)
)

)

This applies only to output and network tapes. The value x is first written on the current writing 
location on the tape and then the writing head is unconditionally advanced by incrementing the write 
counter.  

MoveTape and WriteTape are operations that modify the machine state, effecting the the named operation on 
the specified tape element within the machine. ReadTape just obtain the value from the tape without any 
effect on the state.

Examples of Machine Transitions

This step 3 is where we go through the machine functionality and identify all functions that modify the 
machine state. For each function we define mathematically the corresponding transition using the notation 
we have just defined. Let's go through a suitably representative selection of machine functions to show the 
power of the notation. This is not an encyclopedia of all possible computer functions for every possible 
computer imaginable. This is a selection of examples of how this notation when used by a competent person 
will achieve the desired result. 

The notation works because lambda-calculus is a Turing-complete model of computation. The notation is 
designed in such manner that it is visible by mere inspection of the formulas that they match the expected 
behavior of the machine. This is why the formulas capture the semantics of an actual computer.

It is possible that the definition of some transition does not match what you would expect based on some 
system you are familiar with. Please keep in mind that these examples are for illustrative purpose only. The 
goal is to show the power of the notation. If you don't like the definition provided here, feel free to write your 
own. The method is flexible and has the ability to define any particular transition that you may require.

JUMP Instructions

A JUMP instruction moves the destination of the jump into the instruction pointer (IP). This cause the 
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execution of the program to transfer to the target of the jump.

Jump(target)(S) = Upd(IP, target)(S)

A conditional jump performs the jump only when a condition is met. Otherwise the instruction is just skipped 
over.

JumpZ(target)(S) = (Upd(IP, S(IP)+size); 
if S(Zflag) then Upd(IP, target) 

)(S)

In this example the jump is performed is the zero flag is set, otherwise we skip to the next instruction by 
incrementing the instruction pointer by the size of the instruction in byte. In a real life computer, the 
incrementation of IP is done as we fetch the instruction from memory and before it is decoded and executed. 
The mathematical formula reflects this computation order. We may as well write the equivalent formula:

JumpZ(target)(S) = if S(Zflag) 
then Upd(IP, target) )(S) 
else Upd(IP, S(IP)+size)(S)

It would be mathematically equivalent but the computation order is not the same. In future examples I will 
not care about the computation order when it adds unnecessary complexity in the formula without changing 
its meaning. Rewriting the formula to reflect the real life order is not a problem. It is only uselessly tedious.

Interrupts

Not all transitions are triggered by instructions. Transitions may also be triggered by incoming signals from 
the outside world. An example would be interrupts. Here is how you may possibly define the transition from 
an interrupt, assuming the hardware has a priority interrupt system. Other types of interrupt systems will 
require to adapt the formula.

Interrupt(number)(S) = (Push32(S(IP));
Push08(S(Flags));
Push32(S(imask));
Upd(imask, S(imask) AND Read32(baseVector+(number*8)));
Upd(IP, Read32(baseVector+(number*8)+4))
)(S)

Upon receiving an interrupt the CPU usually saves on the stack the current instruction pointer, the values of 
the flags and the interrupt mask. With each interrupt is associated a number. This number is used to calculate 
the location of an interrupt vector. The first 32 bits are the new interrupt mask and the next 32 bits is the 
address of the interrupt handling routine. However we must make sure the interrupts that are currently off in 
the interrupt mask remain off after loading the new mask. This is why we AND the current mask with the new 
mask. The order of the pushes and the size of the data will vary according to the processor.

When an interrupt is done servicing the REI (Return from Exception or Interrupt) instruction brings the 
computer back to where it was before the interrupt.

Rei(S) = (Pop32(imask);
Pop08(Flags);
Pop32(IP)

)(S)

MOVE Instructions

This is a MOVE instruction that moves 32 bits of data from memory to a 32 bits register. 

Move32M2R(register, location)(S) = ( Upd(IP, S(IP)+size) ;Upd(register, Read32(S, location)) )(S)

© PolR 2011, revised 2012 Licensed under Creative Commons  Details



The opposite movement from a 32 bit register to memory would be:

Move32R2M(location, register)(S) = ( Upd(IP, S(IP)+size); Write32(location, S(register)) )(S)

Both instructions start by moving the instruction pointer to the next instruction. This should be done 
systematically on any instruction that is not a jump unless there is a good reason to do otherwise. 

If you wanted to move 16 bits data instead of 32 bits you would use Read16 and Write16 respectively but the 
mathematical definition would otherwise be the same.

Variants of MOVE may do addressing modes. For example here is how you would rewrite the above definitions 
if the memory address is using indexed addressing, that is it adds an offset to the content of a register to 
obtain the address.

MoveIndex32M2R(destination, reg, offset)(S) = ( Upd(IP, S(IP)+size) ;
Upd(destination, Read32(S, S(reg)+offset)) 

)(S)

MoveIndexx32R2M(reg, offset , source)(S) = ( Upd(IP, S(IP)+size); 
Write32(S(reg)+offset, S(source)) 

)(S)

Virtual Memory

We can also do virtual memory. This requires to rewrite Read32 and Write32 to use translation pages. We also 
need a page fault generation primitive. Let's first work out the preliminaries. The function paged calculates 
the effective address of x based on the content of the page table PT. The page index is extracted from the 
bits startpagebit: maxbit of the address.  This function assumes that the page has a valid page table entry. It 
is required that every instruction validates the page table before making use of the effective address and 
generate a page fault if no valid page table entry is found. 

paged(x, S) = address(Read32(S, PT+x[startpagebit: maxbit]) + x[0:startpagebit-1])

We need a way to test whether a page table entry points to a valid page. Let's assume we have some 
hardware where the page zero is never valid. By convention the page table contains 0 in entries that don't 
point to a valid page. Then we have a test:

invalid(S, x) = (paged(S, x)=0)

In this last definition the left hand side “=” is referring to the mathematical definition when the left-hand side 
“=” in (paged(S, x)=0) is a test for equality. the mathematical notation is a little confusing here. A C 
programmer would have used “==”.

If the hardware uses a different convention to identify invalid entries then you will have to adapt the 
definition accordingly.

Here are paged versions of Read32 and Write32 (little endian).

pRead32(S, x) = S(paged(S,  x+3)) +S(paged(S,  x+2)) +S(paged(S,  x+1)) + S(S, paged(x))
pWrite32(x, v)(S) = ( Upd(paged(S, x), v[0:7]) ;

Upd(paged(S, x+1), v[8:15]) ;
Upd(paged(S, x+2), v[16:23]) ; 
Upd(paged(S, x+3), v[24:31]) 

)(S)

Here is a page fault function. It is an interrupt generated by the CPU, otherwise called an exception. It uses 
the previously defined  Interrupt transition.

Pagefault(S) = Interrupt(pagefaultno)(S)
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With these definitions in place lets make a paged version of the MOVE instruction of 32 bits of data from 
memory to register.

pMove32M2R(destination, source)(S) = 
( If invalid( S, IP ) then Pagefault
else if invalid( S, IP+1 ) then Pagefault
else if invalid( S, IP+2 ) then Pagefault
else if invalid( S, IP+3 ) then Pagefault
else if invalid( S, IP+4 ) then Pagefault
else if invalid( S, source ) then Pagefault
else if invalid( S, source+1 ) then Pagefault
else if invalid( S, source+2 ) then Pagefault
else if invalid( S, source+3 ) then Pagefault
else Upd( IP, S(IP)+size) ; Upd( destination, pRead32(S, paged(S(source)) ) ) 

)(S)

Each address that is needed and could cause a page fault must be checked individually. The IP must be 
checked for page faults five times: once for the opcode of the instruction and four times for the four bytes of 
the source address for a total size of five instruction bytes. Then the source require four checks, one for each 
byte. If a single test gives an invalid result then a page fault occurs and the instruction doesn't proceed any 
further10. The IP is not increased until all addresses are validated for page faults. This means when the page 
fault handling routine returns with an REI instruction the MOVE instruction will be retried and hopefully the 
page table will be valid and a page fault won't occur. 

All instructions involving memory references can be similarly adapted to handle paging. I don't do it 
systematically in this paper because it is tedious and the paging details will obscure the points of the 
examples.

Arithmetic Instructions

I use ADD as an example of how to do arithmetic. Other arithmetic instructions will follow a similar pattern.

An ADD instruction adds to the target the value of the operand in two's complement arithmetic. The CPU flags 
are set to reflect the result of boolean tests applicable to the result. The instruction must also respect the bit 
size of the location where the result is stored. This example illustrates how to define arithmetic operators 
when the limited storage size makes the operation subject to possible overflow conditions. It also illustrates 
how to set CPU flags according to the result of an arithmetic operation.

This formula works when both the target and operand are registers. With in memory operand or target we 
need to use the ReadXX and/or WriteXX functions where appropriate.

Add(target, operand)(S) = 
Let (r = add2complements( S(target), S(operand) ) )
Let (v = r[0:maxbit] )
Let (t = add2complements( S(target)[0: maxbit-1], S(operand)[0: maxbit-1] )(maxbit) )

(Upd(IP, S(IP)+size ); 
 Upd(target, v ); 
 Upd(Zflag, v=allzeros ); 
 Upd(Nflag, πmaxbit ,maxbit(v) );
 Upd(Cflag, πmaxbit+1 ,maxbit+1(r) ) 
 Upd(Vflag,  t XOR πmaxbit+1 ,maxbit+1(r) );
)(S)

This definition assumes the help of a few predefined functions and constants. The function 
add2complements performs two-complement addition on the bit sequences. The result is one bit longer than 
its arguments. Therefore the result must be trimmed to fit the bit size of the target and the extra bit becomes 
the carry flag. The constant maxbit is the index of the high order bit for the bit size. We use projections to 
select specific bits in values v and r. Remember that domains of bit sequences are Cartesian products of bits. 
The constant allzeros is a bit sequence of the right bit size where all bits are zeros. Boolean operators NOT, 
AND and XOR are applied on bits according to boolean algebra.
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If the calculation of the overflow flag seems a bit mysterious, there is a little trick that is useful to know. The V 
flag is the XOR of the carry which goes into the sign bit with the carry that goes out of the sign bit. The 
temporary name t refers to the formula which computes the carry to goes into the sign bit and r(maxbit+1) is 
the carry that goes out of the sign bit. In a real-life computer this apparently complicated formula may be 
implemented quite simply by capturing the two carry bits on the fly from within the adder circuit and feeding 
them to an XOR gate.

Input and Output Instructions

The input instruction inputs data from an IO port. It assumes two auxiliary functions: tape(port) that finds the 
tuple for the tape associated with a port number and, lastIO(port) that will be explained in a short while. 
These two functions must be defined when one defines the tapes and the machine state in steps 1 and 2.

In(accumulator, port)(S) = Let (i = ReadTape(S, tape(port)))
(MoveTape(tape(port));
Upd(IP, size); 

  If i = None
then Upd(accumulator, S(lastIO(port)) )
else ( Upd(accumulator, i); Upd(lastIO(port), i)) ) 

)(S)

The formula reads the tape and checks if the IO device has information ready (the  If i = None clause) and 
actually stores the input value in the accumulator only if the information is there. If the information is not 
ready it assumes the machine will present whatever information is leftover from the last successful input on 
the device. This information must be stored in the abstract machine state (it is held by the hardware) and the 
auxiliary function lastIO(port) finds out the mnemonic number. If i is not None then the information is ready 
for input. The information is stored in the accumulator and remembered in case it is needed.

Of course this notion of machine remembering the last input is only an example of what actual hardware may 
do when the input is not ready. The mathematical definition has to be adjusted to match what the hardware 
actually does.

The output instruction writes data to the IO port. It assumes theauxiliary functions tape(port)  that finds the 
tuple for the tape associated with a port number.

Out(port, accumulator)(S) = (Upd(IP, size); 
 WriteTape(tape(port), S(accumulator) );
)(S)

The CMPXCHG, NOOP and Halt Instructions

The CMPXCHG instruction works like this:

Cmpxchg(mem, reg)(S) = 
If S(mem) = S(accumulator)

then ( Upd(IP, size); Upd(Zflag(S), 1); Write32(mem, S(reg)) )(S)
else ( Upd(IP, size); Upd(Zflag(S), 0); Upd(accumulator, Read32(S, mem)) )(S)

CMPXCHG is an x86 instruction that is used to implement atomic operations such as semaphores that are 
necessary to handle concurrent processes. The accumulator refers to the x86 accumulator. I include this 
instruction to show concurrent processes are mathematically being taken care of by the abstract machine.

The NOOP instruction is a do nothing instruction, updating the instruction pointer to point to the next 
instruction. It works like this:

Noop(S) = Upd(IP, size)(S)
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The halt instruction (HLT in 80x86) stops the CPU processing until an interrupt is received. The transition is 
mathematically described as:

Halt(S) = S

In other words Halt is a transition that does absolutely nothing in a loop. It doesn't even increase the 
instruction pointer. The loop follows from the difference between NOOP and HLT.  NOOP let the computer 
proceed to the next instruction but HLT doesn't.  A CPU whose instruction pointer points to HLT will loop idle 
with the instruction pointer stuck on HLT until an interrupt is received or power is turned off.11 I have included 
this instruction to show it can be handled mathematically by abstract machines. Older computers 
implemented HLT like this. On computers of more recent vintage HLT generates an interrupt.

Bulk Data Transfers and DMA

The next transition is for a byte transfer loop body. Sometimes the hardware will move bytes around in large 
quantity. For example the CPU may execute a MOVS (move string) instruction or a peripheral is doing a DMA 
(Direct Memory Access) transfer. But such hardware will not seize control of the memory bus for the entire 
duration of the transfer. Interrupts are allowed to proceed and other hardware are allowed to continue their 
operations in parallel. This is implemented by a transition that does one iteration of the transfer loop. 

Movs(reg1, reg2, count)(S) = (if (S(count) = 0)
then Upd(IP, size)
else  (Upd(S(reg1), S(S(reg2)));

Upd(reg1, reg1+1);
Upd(reg2, reg2+1);
Upd(count, count-1)

)
)(S)

This moves a string of bytes in memory pointed to by register reg2 to the location pointed to by register reg1. 
There is a double indirection because S(reg2) gets the content of the register which is an address and 
S(S(reg2)) get the value stored at this address. The number of bytes to be transferred is identified by the 
register counter. If counter is zero then the instruction is complete and the instruction pointer is updated to 
point to the next instruction. Otherwise you move the byte, increment the registers in preparation of the next 
byte transfer and decrement the counter. But you don't increment the instruction pointer. When the CPU 
comes to execute the “next” instruction it will do the next iteration of the transfer loop. This makes the MOVS 
instruction interruptible between two byte transfers. This also allows other CPUs or DMA devices to perform 
work between two byte transfers.

DMA devices may have their own similar looping constructs based on registers. A possible design might be to 
require the device driver (executed by the CPU) to load the registers on the DMA device and then send a 
command to start the DMA transfer. Then the DMA circuitry would just loop until the transfer is done. At this 
point the DMA device may send an interrupt to the CPU to notify the device driver that the transfer is 
complete. When there is no DMA transfer or other IO in progress the DMA device is in a halt state waiting. 
There is no concept of instructions for the DMA device in this design. It only reacts to commands from the 
CPU or to incoming IO signals from the outside peripheral device.

Here is how a DMA input transition might look like:

DMAinput(reg, count, port)(S) = (if (S(count) <> 0)
then Let (i = Readtape(S, tape(port) )

MoveTape(tape(port));
(If i <> None 

then 
(Upd(S(reg), i );
 Upd(reg, reg+1);
 Upd(count, count-1)

)
)(S)

This is assumed to be invoked in response to the detection by the hardware interface of a just received input 
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byte. If the counter is zero this is a spurious input12 and nothing is done. If it is not zero then we check if the 
input tape is None. If so this is a spurious signal13 and nothing has really be received. The input is discarded. If 
the signal is genuine then you read the data from the tape and store it in the correct memory location. Then 
you update the register and counter ready for the next byte. 

Power Transitions

Another type of useful transitions are those associated with power on and power off. Some computations are 
designed to continue over several cycles of powering on and powering off the device. In some cases data is 
stored on persistent storage like Flash ROM and the software is designed to resume the computation based 
on this data at power on. In other cases we want to define the mathematics of an abstract network and 
individual devices are allowed to power on and off while the network is running. Either way we need 
transitions to define the effect of power on and power off on the abstract machine state.

The effect of a power off is to erase all locations in the computer where data is stored in a non-persistent 
manner. The effect of a power on is to initialize these locations with new values. Everything else stays 
unchanged. Everything else means the tapes stand still, not being read, not being written and not being 
moved. It also means the data in persistent storage stay as it is. 

Mathematically there is a sequence L0 ... Ln-1 of n locations referring to the elements of the machine state that 
are affected. For each of these locations there are two transitions TurnOff(i) and TurnOn(i) that erases and 
initializes location Li. This gives rises to the following mathematical considerations:

There is a function called volatile in domain n → N such that volatile(i)= Li. In other words volatile enumerates 
the mnemonic for the volatile elements in the states. This function is definable by a cascade of if's.

volatile(i) = if i = 0 then  L0

else if i=1 then  L1

. . .
else  Ln-1

The domains for the volatile elements in the machine state must allow the None value to represent their 
powered off state, ie a powered of machine holds no information in these elements. Therefore if  D0 ... Dn-1 are 
the domains for the base elements in the volatile component then the domains actually used in a machine 
state definition must be the disjoint unions ( D0 + None ),  … ( Dn-1 + None ).

There is a function called  InitialValue in domain n →  D0 + ... Dn-1 which maps each mnemonic for a volatile 
element to the corresponding initial value after power on.

As an alternative to a definite initial value the machine may set the state of some element to an 
unpredictable value that change from one power on cycle to another. We have an input tape called 
Unpredictable where suitable unpredictable values in D0 + ... Dn-1 may be read. 

The definitions of the transitions TurnOff(i) and TurnOn(i) are:

TurnOff(i)(S) = Upd(S,  volatile(i), None)(S)

TurnOn(i)(S) = Upd(S,  volatile(i), InitialValuei)(S) whenever the power on value of  Li is defined by the 
hardware to be InitialValuei.

TurnOn(i)(S) = Let (v=ReadTape(Unpredictable) )
(MoveTape(Unpredictable);
 Upd(S,  volatile(i), v)
)(S) 

whenever the power on value of  Li is undefined by the hardware and is unpredictable. An tape called 
Unpredictable is used to generate unpredicted values in such circumstances.

The transitions to power off and power on the computer are:

PowerOff(S) =  (TurnOffList(n); Upd(status, Stopped) )(S)
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TurnOffList(n)(S) = if (n = 0) then TurnOff(0)(S) else ( TurnOffList(n-1); TurnOff(n) )(S)

PowerOn(S) = ( Upd(status, Running); TurnOnList(n) )(S)
TurnOnList(n)(S) = if (n = 0) then TurnOn(0)(S) else ( TurnOnList(n-1); TurnOn(n) )(S)

These definitions are example of how you can use recursion to define loops in this mathematical notation. You 
power on the abstract machine by initializing all locations in the sequence L0 ... Ln that is affected by power 
changes. Similarly you power off the abstract machine by erasing the sequence of location. The status is 
changed from Stopped to Running or conversely as appropriate.

Wrapping Up Step 3

These examples sufficiently illustrate the power of the notation. It should be clear by now that we have to 
power to describe all computer operations with mathematically defined transitions. The goal of this paper is 
not to describe a specific computer. It is to convince that we have a method powerful enough to describe any 
computer if we spend the time and energy and have access to the required technical documentation.

Some people focus on defining mathematical formulas for computer instructions on a per register/memory 
location basis. Then they notice that many instructions cannot be defined mathematically in this manner by 
ordinary algebraic means. They erroneously conclude that these instructions are not mathematical. The error 
is to try doing it on a per register/memory location basis while restricting themselves to ordinary algebra. A 
similar error occurs when someone tries to define mathematically the individual statements of a 
programming languages like C by ordinary algebraic means. Then this person notices that the variables in a 
program do not work like mathematical variables because they can be overwritten. The erroneous conclusion 
is that programming statements are not mathematical operations. The error is to try to define the formula by 
means of ordinary algebra. The correct way is to define higher order functions that affect the machine state 
as a whole using a language with this kind of expressiveness. Once this technique is understood there is no 
complexity in the hardware that can't be defined mathematically.

Another important technique is to represent as an input tape anything relevant that is not under control of 
the hardware in a deterministic and predictable manner. Input tapes are parameters to the computation that 
may be physically provided by uncomputable real-world events. Such events may influence the computation 
but they are not the computation. This is why they are parameters.

Step 4: Identify the loops that execute the machine transitions and define the corresponding mathematical  
formulas for the body of these loops.

Physical machines carry out the computations by means of loops hard wired in the circuitry. The best known 
example is the instruction cycle. This physical loop replicates the operating principle of the abstract RASP. The 
details of the loop will vary from one make and brand of CPU to another. It typically looks like this.

1. Read the instruction code from the location in memory indicated by the instruction pointer.
2. Increments the instruction pointer to point past the just read instruction.
3. Decode the instruction code.
4. If operands are required, read the operand data from memory at the location pointed to by the 

instruction pointer.
5. If required increment the instruction pointer to point pas the operands data.
6. Perform whatever task is described by the instruction code and the operands if any.
7. Test if an interrupt must be serviced. If there is one then perform the following steps:

● Push the current interrupt mask and CPU flags on the stack.
● Push the current instruction pointer on the stack.
● Determine the interrupt number of the currently processed interrupt.
● Calculate the address of the corresponding interrupt vector.
● Set the interrupt mask according to the interrupt vector.
● Set the instruction pointer to the address of the interrupt handler located right after the 

interrupt mask in the interrupt vector.
1. Return to step 1.
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Much of this loop is built into the transitions as we have defined them in the example. All the “increment the 
instruction pointer” stuff is included. The interrupt handling is defined as a transition. What this loop tells us 
is how the transitions are glued together in an ongoing process.

Mathematically the body of the loop looks like this:

CPULoopBody(S) = ( DoInstruction;  DoInterrupt )(S)

Every iteration of the loop first do an instruction and then checks whether an interrupt should be processed. If 
so then it is processed.

DoInstruction(S) = Let ( code = Read08(S, S(IP) )
Let ( T = FindTransition(code) )
Let ( Op = FindOperand(code)(S) )

T(Op)(S)

Doing an instruction is first find the one byte instruction opcode based on the instruction pointer and the data 
in memory. Then find the mathematically transition that matches the opcode. This means we must have built 
in step 3 a table that associates with each instruction opcode the corresponding mathematical transition. 
Such a table is a mathematical function and it is called  FindTransition in this example. Then we need to find 
the arguments to supply to the transitions. They are the operands of the instruction. Each opcode is 
associated with a method of extracting the operands from the memory. This yield another table called 
FindOperand. Then the transition is applied to the operand and the computer state. Both  FindTransition and 
FindOperand may be written in lambda-calculus as a series of if statements.

If more than one operated is required then we can treat the whole group as a tuple and define FindOperand 
as an operation that retrieves the tuple and apply T to the tuple. This way we can reduce the case of multiple 
operands to the handling of a single entity which is a tuple. 

DoInterrupt(S) = Let (number = Interrupted(S))
( MoveInterruptTapes; if (number <> None) then Interrupt(number) )(S)

The Interrupted(S) function finds the number of the highest priority interrupt that needs servicing. It returns 
None when no interrupt need servicing. If there is an interrupt then we invoke an Interrupt transition such as 
the one that was defined in the examples in step 3. The function  MoveInterruptTapes moves the tapes that 
were read in the evaluation of Interrupted(S) according to the convention about tape information never been 
read more than once.

The loop itself is to calculate CPULoopBody(S) on the current state S and use the result as the state for the 
next iteration of the loop. Repeat this forever, or at least until you get bored and power off the computer. The 
change in the state on each iteration of the loop are the calculations done by the computer.

Let's see another example. Let's consider a simplified DMA device. It has a control register whose content 
tells the device which DMA process is ongoing if any. If a process is ongoing then other registers are used to 
control the progress of the DMA process. For an example see the DMAinput transition in the preceding 
section. The DMA loop body may look like:

DoDMAtransition(S) = Let ( code = DMAprocess(S(ControlReg)) )
Let ( T = FindDMATransition(code) )
Let ( Op = FindDMAOperand(code)(S) )

T(Op)(S)

The DoDMAtransition looks exactly like the DoInstruction function for the CPU. The differences are:

● It doesn't read its code from the same place. 
● It has its own transition table called FindDMATransition.
● It has its own operand identification table called FindDMAOperand.
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● The DMA body of the loop only have a transition part. It has no interrupt part like the CPU.

There is a difference also in how the loop is iterated. The CPU has a clock cycle. Each instruction takes a few 
cycles. The rate at which instructions are executed depends on the clock speed,  the number of clock cycles 
that are required by the instructions and the rate at which interrupts are received.

The DMA device has its own clock cycle that may be and usually is different from the CPU. It may also have 
wait states that depends on the peripheral readiness for physical input or output. The two loops coexists, they 
affect the same memory, but how do we determine in which sequence to interleave their operation? The 
answer depends on the relative speed of the circuitry, external events triggered by the peripherals and also 
the arbitration circuitry for memory access. All of this is outside the control of the software. Like in any 
situation where software is affected by factors outside its control we define a tape. This is simpler than trying 
to define in the minute details the effect of all the laws of electronics that may apply. The name of the tape is 
WhoGoesNext. We define the consolidated loop body like this:

LoopBody(S) = Let ( device = ReadTape(S, WhoGoesNext) )
( MoveTape(WhoGoesNext);
  FindLoopBody(device)
 )(S)

When we wrote all the loop bodies we have built at the same time a table that associates the device with the 
corresponding loop body. This table is the function FindLoopBody(device). Then when you query the tape for 
the device that goes next you can find the corresponding loop body and apply it to the state. This loop would 
work whatever the number of looping processes that runs in the compute.

Step 5: Define what is a run of a program on the abstract machine. 

I begin with a simple scenario where the machine is powered on to start the computation and powered off to 
stop it. Other scenarios will follow.

The Base Power On–Power Off Scenario

A complete run of the computer starts at power on and stops at power off. This requires four things: (1) a 
definition of what is an acceptable start state for the machine before power on in terms of information located 
on the tapes, and, (2) a transition that generates initial values for the non-tapes elements of the abstract 
machines, and, (3) a power input tape. 

The first item means we need to define a formula called isStart(S) that will test True when the state S 
qualifies as a valid starting state and False otherwise. A valid computation is allowed to start at any valid 
state. There is usually more than one valid start state because the content of several of the tapes are the 
inputs which may vary from computation to computation. Tapes used for output will be initially blank. 
Therefore formula isStart(S) identifies the valid inputs for the computation.

The second item is an PowerOn(S) transition that produces the initial state of a computation from a valid 
power off start state. It corresponds to the act of powering on the machine. We have seen its definition in 
step 3.

The third item is a tape called Power that reads True to represent the fact that there is power and reads False 
otherwise.  The computation continues as long as the Power tape stays True and stops as soon as it is False. 
This is an input tape which must be included among the machine tapes..

Let's start with the isStart(S) formula. Recall that S is defined as follow:

S = Status ⨯ M0  ⨯ ... Mi-1 ⨯ Tape0 ⨯ ...  Tapej-1

Among the elements M0 ... Mi-1 some have a well defined state at power on, for instance the content of ROM, 
while others are undefined and will land in some unpredictable state. It is assumed that each domain Mi 

takes the form Di + None for some domain Di. Therefore we can define the permitted powered off state of an 
abstract machine as follow:

● The status component is Stopped
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● For each element Mi the value is None
● For input tapes the counter starts at zero but any sequence of values is permissible. As an option 

some additional constraints may be imposed on the sequences of values, like requiring the Power 
tape to stay on during the entire computation and eventually turn off. The admissible constraints 
must be ones which reflect real life constraints applicable to a physical machine and not application 
constraints that are checked by the program. The point is to define the semantics of the machine and 
not the semantics of the program.

● For network tapes used for input the input counter starts at zero but any sequence of values and any 
output counters are permissible. As an option some additional constraints may be imposed on the 
sequences of values.

● For output tapes the counter starts at zero and the tape must be be all blank, ie. all tape entries are 
None.

● For network tapes used for output the both counters starts at zero and the tape must be be all blank, 
ie. all tape entries are None.

Remember that S(n) is the nth component within the state S. The isStart(S) formula for valid starting states is 
the “and” of these clauses:

● S ϵ S, obviously
● S(0) = Stopped
● S(n) = None  for all n, 1 <= n <= i; for locations corresponding to locations where information is 

stored.
● Sequence(S(n)) ϵ SMn for all n, i+1 <= n < j; When n corresponds to input tapes and network tapes 

used for input; the sets SMn being chosen to meet constraints one may wish to impose on acceptable 
input tapes. If no constraints are imposed SMn will include all elements of the sequence domain.

● Sequence(S(n))(m) = None; for all n, i <= n < j; and for all m; When n corresponds to output tapes 
and network tapes used for outputs

● readCounter(S(n)) = 0; for all n, i <= n < j; for all tapes
● writeCounter(S(n)) = 0; for all n, i <= n < j; When n corresponds to  output tapes and network tapes 

used for outputs

A computation is a sequence of states in N → S such that 

● isStart(S0) is True and
● S1 = PowerOn(S0)
● Si+2 = (MoveTape(Power); LoopBody)(Si+1) provided ReadTape(Si+1, Power) is True. Otherwise the 

computation stops at Si+1.

According to this definition the computation to be performed by the machine will vary depending on (a) the 
input as defined by the tapes and (b) the information that happens to be stored in uninitialized parts of the 
computer at power on. A well programmed computer will not normally rely on the uninitialized parts14 and will 
depend only on input tapes but this mathematical semantics of the machine will accept a poorly written 
program.

The above definition is a mathematical representation of this loop:

1. The initial state is PowerOn(S) for any member S of domain S such that the formula isStart(S) is True.
2. If ReadTape(S, Power) is false then stop the execution otherwise proceed with step 3.
3. A new state S' = (MoveTape(Power); LoopBody)(S) is computed.
4. Go back to step 2 with S' in the role of S.

In other words the computation is the sequence of all states the abstract machine goes through starting from 
the power on and stopping at power off. 

Or in the notation of this article the steps 1–4 are the formula below with the requirement that isStart(S) is 
True of the initial value of S.

MachineRun(S) = (PowerOn;
While( λS ReadTape(S, Power), 
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(MoveTape(Power); LoopBody)
) 

)(S)

Documentation note: the λS in the loop condition is necessary to make the loop condition apply to the current 
state of the loop iteration.

The Per Routine or Per Program Scenario

We may want the definition of a computation from running a specific program or a specific portion of a 
program like a block of code, procedure, method or function within a program. Whenever the computer runs 
only one program from power on to power off there is no problem. A run of the computer is the same thing as 
a run of the program in such scenario.  But most real life computers also run an operating system, device 
drivers and plenty of other programs and utilities. The computation done by a specific program must be 
isolated from the computations done by other software in the same computer run.

This could be done with filtering. The trick is to view the run of the computer as a sequence of successive 
states generated one after another. The run of the program or block of code is the succession of these states 
where this particular program or code executes.

The sequence of states from a run of the computer is defined by the pair of recursive equations:

SeqRun(S)(0) = PowerOn(S)
SeqRun(S)(n+1) = if not ReadTape(S, Power) then S else (MoveTape(Power); LoopBody)(SeqRun(S)(n))

Assuming that ProgramFilter(S) is a boolean function which test whether a state belongs to the execution of a 
program or block of code then a run of this program or block of code is defined with these three functions.

NextStateAndCount(S)(n) = If  not ReadTape(S, Power)
then None
else if ProgramFilter(SeqRun(S)(n)) 
then 〈SeqRun(S)(n+1), n〉 
else NextStateAndCount(S)(n+1)

ProgramRunList(S)(n) = Let (x = NextStateAndCount(S)(n))
if isNone(x)

then None
else 〈π0,1(x), ProgramRunList(S)(π1,1(x))〉 )

ProgramRun(S) = ProgramRunList(S)(0) when state S shouldn't be in the list or
〈S,  ProgramRunList(S)(0)〉 when state S should be included in the list

The idea is to generate a list of all states that belongs to the program run. Function NextStateAndCount(S)(n) 
will find the next such state and index number that comes after state number n in a program run starting with 
initial state S. If no such state is found before power off then the None value is returned. There is a quirk in 
this definition: the test is applied to state number n but the state returned is number n+1. The reason is that 
the ProgramFilter test is usually based on components such as the content of the program counter (PC) which 
indicate which execution will execute next. Therefore when the test passes its result is applicable to the next 
state, hence the returned state number is n+1. A consequence is that the initial state will never included in 
the list by this mechanism. This state has to be included explicitly if need be.

Function ProgramRunList(S)(n) builds a list of all states belonging to the program run that comes after state 
number n. Then function ProgramRun builds the complete list of states starting at state number 0 and this is 
the entire program run.

A possible test for ProgramFilter(S) might be to verify that the program counter is in the correct range. For 
example:
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ProgramFilter(S) = lowPCvalue ≤ S(PC) ≤  highPCvalue

If the system uses virtual memory we need to add a clause to ensure the page table register points to the 
page table that corresponds to the address space where the program is loaded.

ProgramFilter(S) = (lowPCvalue ≤ S(PC) ≤  highPCvalue) and (S(PTR) = programPageTable)

More filters may be devised to match the many possible program circumstances.

Computations Across Multiple Cycles of Powering On and Off

Sometimes we want to define a computation that runs across multiple cycles of power on and power off 
events, resuming from where it stopped at the next power on. We will use this kind of computations when we 
define abstract network because individual nodes are allowed to shutdown and restart while the rest of the 
network keeps running. The computation starts when the computer is first connected to the network and 
powered on, then it is suspended when the computer is turned off, resumed when it is turned on again and 
after a number of cycles going off and on again eventually it stops definitively when the computer is 
permanently removed from the network.

This definition requires on top of isStart(S0) and the Power tape a inService tape that is true while the 
computer is in service even if powered off and becomes false when the computer is permanently put out of 
service. It also requires to include in the state whether the abstract machine is currently powered or not. 

We must adjust LoopBody(S) to account for transitions involving turning power on and off. The new loop body 
is:

LoopBodyWithPower(S) = Let (currentStatus = S(Status))
Let (stayPowered = Readtape(S, Power))

(MoveTape(Power); 
 if currentStatus=Running

then if stayPowered
then LoopBody
else PowerOff

else if stayPowered
then PowerOn

)(S)

The rule is quite simple. When the power was on and is still on the abstract machine does the LoopBody. 
When the power was on and becomes off the abstract machine does a power off transition. When the power 
was off and becomes on the abstract machine does a power on transition. When the power was off and stays 
off the abstract machine does nothing but read the Power tape.

Notice the use of the Status information to determine whether power transitions are required. This is where 
this information is used.

We define the computation as a sequence of states in N → S such that 

● isStart(S0) is True and
● S1 = PowerOn(S0)
● Si+2 = (MoveTape(inService); LoopBodyWithPower)(Si+1) provided ReadTape(Si+1, inService) is True. 

Otherwise the computation stops at Si+1.

The above definition mathematically represents a loop like this:

1. The initial state is PowerOn(S) for any member S of domain S such that the formula isStart(S) is True.
2. If ReadTape(S, inService) is False then stop the execution otherwise proceed with step 3.
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3. A new state S' = (MoveTape(inService); LoopBodyWithPower)(S) is computed.
4. Go back to step 2 with S' in the role of S.

Compare the definitions in the case the run is from power on to power off with the case the run goes across 
power on-off cycles. The formulas look the same. We have replaced the Power tape with the inService tape 
and the LoopBody function with LoopBodyWithPower. Everything else is exactly the same. This means that in 
both cases the abstract machine representing the work of the computer shares the same abstract pattern.

The formula for this loop is:

MachineRun(S) = (PowerOn;
While( λS ReadTape(S, inService), 

(MoveTape(inService); LoopBodyWithPower)
) 

)(S)

Documentation note: the λS in the loop condition is necessary to make the loop condition apply to the current 
state of the loop iteration.

Summarizing Interlude, Abstract Computer

Let's summarize the definition of the abstract computer in mathematical terms. This summary captures the 
common mathematical pattern of the various flavors of abstract machines.

The abstract computer is a quintuple P = 〈S, LoopBody, isStart, PowerOn, Stop〉 where the components of the 
tuple are as follow:

S corresponds to an inventory of all the places where information is stored in the computer together with an 
inventory of all the inputs and outputs the computer may use. S is defined as follow:

S =  Status ⨯ M0  ⨯ ... Mi-1 ⨯ Tape0 ⨯ ...  Tapej-1

The abstract computer executes a loop whose body is  LoopBody in S → S. 

The isStart(S) formula defines what constitutes a valid starting point for the loop. It is the “and” of these 
clauses:

● S ϵ S, obviously
● S(0) = Stopped
● S(n) = None  for all n, 1 <= n <= i; for locations corresponding to locations where information is 

stored.
● Sequence(S(n)) ϵ SMn for all n, i+1 <= n < j; When n corresponds to input tapes and network tapes 

used for input; the sets SMn being chosen to meet constraints one may wish to impose on acceptable 
input tapes. If no constraints are imposed SMn will include all elements of the sequence domain.

● Sequence(S(n))(m) = None; for all n, i <= n < j; and for all m; When n corresponds to output tapes 
and network tapes used for outputs

● readCounter(S(n)) = 0; for all n, i <= n < j; for all tapes
● writeCounter(S(n)) = 0; for all n, i <= n < j; When n corresponds to  output tapes and network tapes 

used for outputs

The PowerOn(S) transition is performed immediately upon powering the machine. It is a state transition from 
domain S → S. 

Stop is an input tape that returns a value in Bool indicating the termination of the computation. 

A computation performed by the machine P is a sequence Si of states in N → S such that 
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● isStart(S0) is True and
● S1 = PowerOn(S0)
● Si+2 = (MoveTape(Stop); LoopBody)(Si+1) provided ReadTape(Si+1, Stop) is True. Otherwise the 

computation stops at Si+1.

This computation corresponds to this following function  S → S

MachineRun(S) = (PowerOn;
While( λS. ReadTape(S, Stop), 

(MoveTape(Stop); LoopBody)
) 

)(S)

Documentation note: the λS in the loop condition is necessary to make the loop condition apply to the current 
state of the loop iteration.

Step 6 (abstract networks only): Connect the inputs and outputs of abstract machines to define the 
corresponding abstract network.

There are models of computations that will represent abstract networks better than lambda-calculus but this 
doesn't prevent lambda-calculus from being able to do it. There is a definite advantage in using the same 
mathematical formalism for both the individual machines and their aggregation in the network. Therefore I 
expand the notation to include features targeted specifically at networks.

Expanding the Notation to Lists

A domain of lists L of elements in domain D is a recursively defined domain of the form:

L = (D ⨯ L) +  None

The empty list consists of the single value None. A nonempty list is a pair 〈head, rest〉 where head is the first 
value in the list and rest is the rest of the list. This permits the functions:

isEmpty(x) = isNone(x)
First(〈head, rest〉) = head
Rest(〈head, rest〉) = rest

The domains are  L → Bool for isEmpty,   D ⨯ L → D for First and D ⨯ L → L  for Rest.

Neither First not Rest are defined when the list is empty, or more precisely selecting the (D ⨯ L) domain from 
an empty list will return the bottom element of the (D ⨯ L) domain. Correspondingly First and Rest will return 
the bottom element of the D and L domains respectively. In domain theory this corresponds to absence of 
data and First and Rest are useless in such circumstances. The assumption is we have to test for the empty 
list before calling these functions to ensure meaningful results.

The function Append(L, v) appends the value v at the end of list L. The domain for Append is  L ⨯ D → L.

Append(None, v) = 〈v, None〉
Append(〈head, rest〉, v) = 〈head, Append(rest, v)〉

The function AtIndex(L, n) returns the item located at index n in list L or None if no such item exist. Index 0 
corresponds to the first element (the head) of the list. Index 1 corresponds to the second element etc.  The 
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domain for AtIndex is  L ⨯ N → D.+ None. 

AtIndex(None, n) = None
AtIndex(〈head, rest〉, 0) = head
AtIndex(〈head, rest〉, n+1) = AtIndex(rest, n)

The function Replace(L, n, v) replaces the value located at index n in the list L with value v. The domain for 
Replace is L ⨯ N ⨯ D → L.

Replace(None, n, v) = None
Replace(〈head, rest〉, 0, v) = 〈v, rest〉
Replace(〈head, rest〉, n+1, v) = 〈head, Replace(rest, n, v)〉

The function Delete(L, n) deletes the item located at index n in the list L. The domain for Delete is L ⨯ N → L.

Delete(None, n) = None
Delete(〈head, rest〉, 0) = rest
Delete(〈head, rest〉, n+1) = 〈head, Delete(rest, n)〉

Machine Descriptors

As was mentioned before an abstract network is a set of abstract machines that are connected. Some output 
tapes of some abstract machines are the input tapes of other (or same) abstract machines. When tapes are 
used as both input and output to connect two machines they are called network tapes. 

A computation performed by the abstract network is a sequence of transitions from one network state to 
another. Conceptually a network state is the aggregation of all the states of the abstract machines and all 
connections between machines in the network. The interpretation is that at every moment during the 
computation if you take a snapshot of the states of all abstract machines and all connections in the abstract 
network you get the network state. 

One of the difficulties is that the abstract machines are heterogeneous. They have a different internal 
structure with different component and different transitions. But because they all conform to the same 
abstract mathematical pattern it is possible to handle this diversity with the help of a mathematical device 
called the machine descriptor.

A machine descriptor for machine m is a quintruple 〈 Sm, LoopBodym, isStartm, PowerOnm, Stopm  〉 where Sm is 
the current machine state and  LoopBodym, isStartm, PowerOnm and Stopm  are the basic primitives used to 
define the abstract machine computation as explained above. Please note that there is a difference between 
the definition of an abstract machine as a quintuple P = 〈S, LoopBody, isStart, PowerOn, Stop〉 and a machine 
descriptor. The first element of the quintuple P is the state domain but the first element of the machine 
descriptor is the state. 

The primitives in the descriptors will vary from machine to machine, therefore they are identified with a 
subscript. This descriptor belongs to domain:

MDm  = Sm  ⨯ (Sm → Sm) ⨯ (Sm → Bool) ⨯ (Sm → Sm) ⨯ (N → Bool)

Assuming there are in the abstract network n+1 possible machine types with one domain MDi for each type 
of machine the domain for all machines descriptors is:

MD =  MD0 + . . . + MDn + None

This domain allows to talk about machine descriptors in general while the machines primitives themselves 
belongs to different domains. We allow a descriptor to be None to indicate the absence of a machine.

As a matter of convention each of the primitives has a corresponding function identified with a prime ' 
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symbol. The notation Function'(md) means the corresponding primitive from a machine descriptor in domain 
MD. The primitives are:

S'(md) for the machine state, Loopbody'(md) for the body of the computing loop, and similarly for 
isStart'(md), PowerOn'(md) and Stop'(md). 

Another notation is NewState(md)(S) which changes the state component of the machine descriptor. It is 
used to implement transitions on machine descriptors based on transitions from the underlying machine.

NewState(S)(md) = Upd(0, S)(md)

The Definition of Abstract Networks and their Domains

An abstract network is the collection of all its abstract machines and their connections taken together. This is 
expressed in formal mathematical terms as tuples from Cartesian products as follow.

An abstract connection is a quadruple 〈P, input, Q, output〉 where P and Q are abstract machines, 
input is the index to an input network tape in a state for P and output is the index an output tape in a 
state for Q. It is said that P and Q are connected by the connection C when there is an input and an 
output such that C = 〈P, input, Q, output〉 and P(input) = Q(output), that is the same network tape is 
present in both machines.

An abstract network is a pair 〈AM, AC〉 where AM represents the abstract machines in the network and 
AC represents the abstract connections in the network. The abstract machines AM is a list 
〈P0 , ... 〈Pn, None〉 ...〉 where each of the Pi in the list is an abstract machine which is said to be a 
machine in the network. The abstract connections AC is a list 〈C0 , ... 〈Cm, None〉 ...〉 where each of the 
Ci in the tuple is an abstract connection between two machines in the network. For all connections in 
the network Ci = 〈P, input, Q, output〉 we have P(input) = Q(output).

The domains for a list of machine descriptors is defined recursively:

AN = (MD ⨯ AN) +  None

The domain for a list of abstract connections is defined recursively as a list of quadruples.

AC = ((N ⨯ N ⨯ N ⨯ N) ⨯ AC) +  None

The first and third element of the quadruple are the indices where to find the connected machines in a list of 
machine descriptors. The second element is the index where to find the input tape in the first machine sate 
while the fourth index will likewise locate the output tape in the second machine.

We define significant names for the components of an abstract connection.

inMachine(C) = π0,3(C)
inTape(C) = π1,3(C)
outMachine(C) = π2,3(C)
outTape(C) = π3,3(C)

The domain for an abstract network is as this: 

NS = AN ⨯ AC ⨯ NT

The domain NT is for a tape containing the descriptions of network transitions. These transitions will be 
defined shortly.

We define significant names for the components of an abstract network.

Machines(N) = π0,2(N)
Connections(N) = π1,2(N)
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Transitions(N) = π2,2(N)

We also define ReadTransitionTape(N) and MoveTransitionTape(N) analogously for machine state tapes:

ReadTransitionTape(N) = let ( sequence=π0,1(Transitions(N)) )
let ( readCounter=π1,1(Transitions(N)) )

sequence( readCounter )

MoveTransitionTape(N) = let ( sequence=π0,1(Transitions(N)) )
let ( readCounter=π1,1(Transitions(N)) )

〈 Machines(N), Connections(N), 〈 sequence.  readCounter+1 〉 〉

Network Transitions

Now that we know what an abstract network looks like in terms of the constituent machines and connections 
we proceed to the definition of what is a computation performed by the network. The computation advances 
one step at a time by the occurrence of each of any of the following events. 

● One of the individual machines makes a transition.
● A machine is added to the network
● A machine is initially powered on
● A machine is removed from the network
● A connection between two machines is established
● A connection between two machines is torn down
● The network is done computing and stops

Each of these events corresponds to a domain for a computation event descriptor:

MachineTransition = N
AddMachine = MD
PowerOnMachine = N
RemoveMachine = N
AddConnection = (N ⨯ N ⨯ N ⨯ N)
RemoveConnection = N
StopNetwork = Bool

Together these domains for the basis domain for the tape of network transitions NT mentioned above. That is 
this basis is the domain NE of network events defined as follow:

NE = MachineTransition + AddMachine + PowerOnMachine + RemoveMachine + 
AddConnection + RemoveConnection + StopNetwork

A MachineTransition is described by the index (a natural number) in the list of machine descriptors where 
we find the machine that will perform the next transition.

The transition AddMachine is described by a machine descriptor for the machine to be added to the 
network.

The transition PowerOnMachine is described by the index in the list of machine descriptors where we find 
the machine to be powered on initially.

The transition RemoveMachine is described by the index in the list of machine descriptors where we find 
the machine to be removed from the network.

The transition AddConnection is described by the four numbers making the connection to be added.

The transition RemoveConnection is described by the index in the list of connections where the connection 
to be removed is located.
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The transition StartMachine is described by the index in the list of connections where the machine is 
located and the initial state the machine is initialized to once started.

The transition StopNetwork is a boolean that is True when it is time for the network to stop computing.

Each of the transitions except stopping the network is defined by a function.

The transition event MachineTransition corresponds to the function MachineTransition(m)(N) from domain 
MachineTransition → NS → NS. This transition executes one single machine transition on machine at index 
m in the Machines(N) list of abstract machines in the network. In the event this transition writes something to 
some output tape this transition propagates the change to the corresponding input tape of the receiving 
machine.

The transition works by (a) locating in the list of machines the descriptor of the one that must perform the 
transition, (b) extracting from the machine descriptor the current machine state, (c) execute the transition on 
the state, (d) update the descriptor with the new state, (e) update the list of machines with the updated 
descriptor and (f) finally synchronize the output network tapes with the inputs of the machines that will 
receive the information.

MachineTransition(m)(N) = let (AN=Machines(N))
let (AC=Connections(N))
let (descriptor=AtIndex(AN, m))
let S = S'(descriptor))
let (T = if not ReadTape(Stop'(descriptor))(S)

then ( MoveTape(Stop'(descriptor)); LoopBody'(descriptor) )(S)
)

let newAN = Replace(AN, m, NewState(descriptor)(T) )
〈Sync(newAN, AC, m), AC〉

The auxiliary function Sync(AN, AC, m) is used to synchronize the output network tapes of machine at index 
m with the corresponding input network tapes of the other machines receiving this information. It works by 
traversing the list of connections and, upon finding a connection that applies, replicating the output network 
tape in the input machine state. No effort is made to go directly to the relevant connection. The function just 
checks them all and make sure they are all in sync, trusting that spurious synchronization is equivalent to no 
action being taken. This mathematical function looks complicated but its real life implementation is achieved 
by establishing the proper physical connections. No actual computation need being done.

Sync(AN, None, m) = AN
Sync(AN, 〈connection, rest〉, m) = if outMachine(connection)=m

then Sync(SyncHead(AN, connection, m), rest, m)
else Sync(AN, rest, m)

SyncHead(AN, connection, m) = let ( OutputTape=S'( AtIndex(AN, m) )(outTape(connection) ) )
let ( InputMachineDescriptor=AtIndex(AN, InMachine(connection))) )
let ( InputTapeIndex=inTape(connection)  )
let ( S=S'(InputMachineDescriptor) )
let ( T=Upd( InputTapeIndex,  OutputTape)(S))
let ( NewInputMachineDescriptor= NewState( InputMachineDescriptor)(T)

Replace(AN,  InMachine(connection), NewInputMachineDescriptor)

The transition event AddMachine corresponds to the function AddMachine(M)(N) from the domain 
AddMachine → NS → NS. This function just take the descriptor of a machine and adds it to the the list of 
machines in the network.

AddMachine(M)(N) = 〈 Append(Machines(N), M), Connections(N) 〉 

For the sake of integrity it should be assumed that machine are added to the network in a valid powered off 
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state, that is isStart'(M) must be True.

The transition event PowerOnMachine corresponds to the function PowerOnMachine(m)(N) from domain 
PowerOnMachine → NS → NS. This function locates the machine descriptor and performs a power on 
transition.

PowerOnMachine(m)(N) = let ( AN=Machines(N) )
let ( descriptor=AtIndex(AN, m) )
let ( T=PowerOn(S'(descriptor))

〈 Replace(Machines(N), m, NewState(descriptor)(T)), Connections(N) 〉 

The transition event RemoveMachine corresponds to the function RemoveMachine(m)(N) from domain 
RemoveMachine → NS → NS. This function removes the machine and its associated connections from the 
abstract network.

RemoveMachine(m)(N) = Let ( AN=Machines(N) )
Let ( AC=Connections(N) )

〈 Delete(AN, m), disconnectMachine(AC, m) 〉

This definition uses the auxiliary function   disconnectMachine(AC, m) removes the connections involving 
machine m from the list of connections AC.

disconnectMachine(AC, m) = if isEmpty(AC)
then None
else let (connection=First(AC))

if inMachine(connection)=m or outMachine(connection)=m
then disconnectMachine(Rest(AC), m)
else 〈 connection, disconnectMachine(Rest(AC), m) 〉

The transition AddConnection corresponds to the function AddConnection(C)(N) which adds a connection to 
the list of established connection in the network.

AddConnection(C)(N) = 〈 Machines(N), Append(Connections(N), C) 〉

The transition RemoveConnection corresponds to the function RemoveConnection(n)(N) which aremoves 
connection number n from the list of established connection in the network.

RemoveConnection(n)(N) = 〈 Machines(N), Delete(Connections(N), n) 〉

The transition StopNetwork doesn't have a corresponding function. It indicates the computation has ended.

The Computation Carried Out by the Network

The initial state of the network is the triple 〈 None, None, Events 〉 where the lists of machines and 
connections are empty and Events is a tape of network events to occur. This tape is one that corresponds to 
non deterministic events so it is an ideal candidate for replacement by a probabilistic choice. In fact a 
probabilistic choice is probably a more intuitive description of the network semantics because events occurs 
in a network in a very loosely correlated manner. When we use a tape it may be seen as a record of events to 
occur. Then human intuition may give a pre-determined interpretation to such a record in the sense that the 
human may understand the events are decided before the computation begins. This interpretation is 
erroneous because it introduces an operational element (the moment in time when the events are 
determined) in a denotational definition. This tape is intended to be interpreted as the sequence of 
nondeterministic choices that will be made in the course of computation. No execution order is implied.

The Events tape is subject to a number of conditions:
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● isStart'(M) must be True of each machine M involved in an AddMachine transition.
● MachineTransition, PowerOnMachine and RemoveMachine transitions must always apply to 

machines that are already in the list of machines.
● MachineTransition transitions must always apply to machines that are in Running status. 
● PowerOnMachine transitions must always apply to machines that are in Stopped status. 
● RemoveConnection transitions must always apply to connections that have already been 

established.
● At most one transition StopNetwork is present and must always be the boolean value True.

Then the computation proceeds by executing the transitions corresponding to the Events tape one after 
another until the network is stopped. This gives us a loop:

1. The initial network state NS0 is 〈 None, None, Events 〉 as indicated above.
2. An event is read from the tape  Events.
3. If event is in StopNetwork then the computation stops
4. Else the next network state NSi+1 is calculated from the event and network state NSi

This corresponds to the formula

NetworkRun(Events) = Execute( 〈 None, None, Events 〉 )

Execute(N) = let ( event=readTransitionTape(N) )
if isStopNetwork(event)

then N
else (moveTransitionTape;

if isMachineTransition(event) then MachineTransition(event)
else if isAddMachine(event) then AddMachine(event)
else if isPowerOnMachine(event) then PowerOnMachine(event)
else if isRemoveMachine(event) then RemoveMachine(event)
else if isAddConnection(event) then AddConnection(event)
else if isRemoveConnection(event) then RemoveConnection(event);

Execute
)(N)

The Execute function reads a network event descriptor from the tape and then move the tape and execute 
according to the event descriptor until told to stop the network computation. The NetworkRun function starts 
the Execute loop with the initial event list.

This definition allows abstract machines that are turned on and off as the network is running provided they 
are defined as was discussed previously.

This definition implicitly serialize the event execution due to their sequencing on the tape. The probabilistic 
choice alternative will have the same effect. This is a limitation of lambda-calculus which is a sequential 
computation model. This serialization is of no consequence for the parallel execution of independent machine 
transitions is serializable. But from a philosophical perspective the use of an inherently distributed model of 
computation should be superior.

Unreliable Communication Links

This treatment of network connections assumes that the data transfer between the emission of output and 
the reception of input is faultless. Real life data exchange is subject to various problems like data loss, data 
alteration and reception of spurious data. It is also subject to bugs in device drivers that may cause attempts 
to read the input before the output is ready. If such phenomena need to be factored in the definition. The 
solution I propose is the use what I call a mangling receptionist. 

The mangling receptionist is an abstract machine that is inserted between the source of output and the 
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reception of input to capture the effect on the data of communication problems15. The receiving machine 
doesn't get the data directly from the sender. It gets it from the mangling receptionist who uses a 
nondeterministic input tape to determine if the data is passed as sent from the output or if some altered 
version must be used. The abstraction is that an unreliable communication channel has computational 
properties. It alters the data on a probabilistic basis. The job of the mangling receptionist abstract machine to 
to do these alterations. If data has been received from the sender the receptionist gives it. If no data has 
been received and the request for data is premature, the receptionist answers “None”. If the data is lost, the 
receptionist doesn't pass it through either and if it has been received altered the receptionist passes the 
altered version. In case of spurious data injected in the inputs the mangling receptionist reads them from the 
mangling tape and introduces this information between two pieces of genuine information. 

The loop body of the mangling receptionist looks like this:

ManglingLoop(S) = 
Let Action = ReadTape(S, ManglingTape)

(MoveTape(ManglingTape);
 If Action = “Received”

then (WriteTape(output, ReadTape(S, input) );
MoveTape(input);
MoveTape(output)
)

 If Action = “Dropped”
then MoveTape(input)

else if Action = “Altered”
then (WriteTape(output, ReadTape(S, input) xor ReadTape(S, ManglingTape) );

MoveTape(ManglingTape);
MoveTape(input);
MoveTape(output)

)
else if Action = “Spurious”

then (WriteTape(output, ReadTape(S, ManglingTape) );
MoveTape(ManglingTape);
MoveTape(output)

)
else if Action = “NotYetReceived”

then (WriteTape(output, None );
MoveTape(output);
)

) (S)

A possible interpretation of the mangling receptionist is to view the communication channel as an abstract 
machine with data mangling capabilities. The output tape of the sending machine is connected to the input of 
the mangling receptionist. The output of the mangling receptionist is connected to the input of the receiving 
machine. So the mangling receptionist is an eavesdropper on the communication but for the purpose of 
defining the abstract network with formulas it is treated as a machine in the network as any other machine.

Note that the loop of the mangling receptionist is executing an instruction set except the the instructions are 
not stored in memory. They are read from the mangling tape.

Shared Communication Channels

The definition of abstract network assumes all communication links are unidirectional point to point links. 
Bidirectional links are represented with a pair of unidirectional links going in opposite directions. Shared 
channels like wireless, satellite, coaxial ethernet cables and 10Base-T hubs are represented by an abstract 
machine. Again the abstraction is that the communication channel has some computational property, it 
replicates the data to many recipients. For purpose of defining the semantics of an abstract network by a 
mathematical formula the communication channel is treated as a node in the network where the actual 
machines must connect. The shared channel loop body looks like this:

SharedChannelLoop(S) = Let ( InputList = ReadTape(S, WhoIsTalkingNow) )
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MoveTape(S, WhoIsTalkingNow);
if length(InputList) = 1

then Let (Data = ReadTape(S, First(InputList))) )
(MoveTape(First(InputList));
 WriteAllOutputTapes(Data)
)

else (MoveAllInputTapes(InputList); WriteAllOutputTapes(Collision))

The shared channel is treated like a star shaped point to point network with the hub replicating the data from 
any single source to all the nodes. The WhoIsTalkingNow tape returns a list of the input tapes (called 
InputList) that are sending data at the same time. There must be at most one of them talking, otherwise a 
collision occurs. If exactly one is sending data then the data it replicated to all output tapes. If more than one 
is sending data, then the special value Collision is sent under the assumption the receiving port at the other 
end is able to handle this condition. This loop replicates the situation where the collision is seen by all 
receiving device or none of them which is built into some shared communication channel protocols. As an 
alternative it is possible to write a loop that will mathematically calculate the propagation delays of signals 
between nodes and determine whether the collision is seen at one node while the data is successfully 
received at another node. Another alternative is to let the hub always replicate the data to all nodes and 
leave it to the mangling receptionists at the receiving ends to determine whether a collision occurred based 
on their mangling tapes.

This assumes the shared channel has an OutputList which includes all output tapes receiving data to the 
channel. There are three helper functions that handle tape operations on a list of tapes. WriteAllTapes 
replicate the data to all output tapes by calling WriteAllOutputs which does the actual job. This is used to 
implement the hub-like function. MoveAllTapes is used to move the input tapes involved in a collision.

WriteAllTapes(Data)(S) = WriteAllOutputs(Data, OutputList)(S)

WriteAllOutputs(Data, L)(S) = (If (L=None) 
then S
else (WriteTape(First(L), Data); 

MoveTape(First(L));
 WriteAllOutputs(Data, Rest(L))
)(S)

)(S)

MoveAllInputTapes(L)(S) = (If (L=None) 
then S
else (MoveTape(First(L)); 

 MoveAllInputs(Rest(L))
)(S)

)(S)

This concludes the discussion of abstract networks.
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1 See [Aho 1974] p. 15.
2 See [Minsky 1967] p. 2
3 See [Stoy 1981] chapters 6 and 7 for an explanation of domain theory which is suitable for the purposes of 

this article. Chapter 8 explains how lambda-calculus is given a semantics in terms of domains.
4 Such a test function is not computable because it would solve the halting problem. 
5 There exist a stochastic version of lambda-calculus which seems to provide for probabilistic choice. I don't 

use it because I am not familiar with it. See [Ramsey 2002]
6 A well written driver normally doesn't do such things. It will read from the keyboard port only when it 

knows there is valid data to be read, either by testing a status flag in an input register or by responding to 
an interrupt. But it doesn't matter. The abstract machine still needs to give a mathematical semantics to 
poorly written drivers. Even buggy software is mathematics.

7 Mathematical domains are independent from the physical means used to store the bits, They are only 
concerned with the information value of the bits.

8 If you wonder how Order3 works think of the bubble sort algorithm. It compares every two adjacent pairs 
of values and if they are in the wrong order it swaps them. Repeat this until every adjacent pairs are in 
order. If you work out a bubble sort for three values and unroll the loop you get Order3. There is no need 
to exhaustively list all possible permutations of r1, r2 and r3 because the ones that are listed suffice to do 
the work of a bubble sort.

9 [Stoy 1981] is a reference manual for denotational semantics although the techniques used here are 
somewhat different from Stoy's due to the difference is purposes. He defines a semantics for programming 
languages while this paper shows how to define a semantics for a physical machine.

10 I am sure hardware engineers will point to better more efficient tests for checking all memory references 
go through valid page tables than this exhaustive list. The definition should be adapted to whatever is 
appropriate to match the hardware.

11 An older version of this document has written halt like this: Halt(S) = While(λS.True, λS.S)(S). A reader has 
commented that this is incorrect because the loop will not transfer control back to the instruction cycle 
where interrupt processing occurs. Therefore interrupts are not received executed. The corrected version 
lets the instruction cycle do the looping by not incrementing the instruction pointer. Then execution is 
stuck on the same HLT instruction until an interrupt cause a change of the value of the instruction pointer.

12 This may correspond to situations where the counter has been initialized wrong. The interface still receive 
data but it has nowhere to go because according to the counter the transfer should be complete.

13 This situation represents something like noise on the line. The DMA interface detects a signal but when 
comes the time to read the data nothing shows up. This definition reflects an ability of the hardware to 
detect such conditions and ignore the spurious signal. If the hardware has no such ability, just omit the 
test for None and proceed as if the tape will always have data to provide.

14 Some applications like cryptography may properly use the pseudo-randomness inherent in reading non-
initialized part of computer memory. 

15 There is no obligation to make abstract machines correspond to physical machines. Abstract machines are 
mathematical devices that may be used to represent all sort of physical phenomena including some that 
are not machines.


